Skip to main content
Log in

Correlation function of quasars from SDSS DR3

  • Extragalactic Astronomy
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

We calculate the parameters of the two-point correlation function of quasars w(r) = (r c /r)γ on the basis of the SDSS DR3 data. The correlation functions are first determined from projected distances with the use of a special technique for compiling randomized catalogs. Next the parameters of the spatial correlation function are obtained with the assumption of local isotropy. For the quasars with redshifts z = 0.8–2.1, we obtained the estimates γ = 1.76 ± 0.14, r c = 6.60 ± 0.85 h −1 Mpc in the comoving distance range 2–30 Mpc and γ = 1.90 ± 0.11, r c = 6.95±0.57 h −1 Mpc in the range 2–50 Mpc. These estimates agree, within the limits of errors, with the estimates obtained for the redshifts 0.4 < z < 2.1. The original catalog shows some deficit of pairs with separations less than 1 Mpc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972.

  2. Peebles, P.J.E., The Large-Scale Structure of the Universe, Cambridge: Cambridge Univ., 1980.

    Google Scholar 

  3. Alcock, C. and Paczynski, B., An Evolution Free Test for Non-Zero Cosmological Constant, Nature, 1979, vol. 281, pp. 358–359.

    Article  ADS  Google Scholar 

  4. Budavary, T., Connoly, A.J., Szalay, A.S., et al., Angular Clustering with Photometric Redshifts in the Sloan Digital Sky Survey: Bimodality in the Clustering Properties of Galaxies, Astrophys. J., 2003, vol. 595, no. 1, pp. 59–70.

    Article  ADS  Google Scholar 

  5. Connoly, A.J., Scranton, R., Johnston, D., et al., The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data, Astrophys. J., 2002, vol. 579, no. 1, pp. 42–47.

    Article  ADS  Google Scholar 

  6. Croom, S.M., Boyle, B.J., Shanks, T., et al., The 2dF QSO Redshift Survey. XIV. Structure and Evolution from the Two-Point Correlation Function, Mon. Notic. Roy. Astron. Soc., 2005, vol. 356, no. 2, pp. 415–438.

    Article  ADS  Google Scholar 

  7. Croom, S.M., Shanks, T., Boyle, B.J., et al., The 2dF QSO Redshift Survey. II. Structure and Evolution at High Redshift, Mon. Notic. Roy. Astron. Soc., 2001, vol. 325, no. 2, pp. 483–496.

    Article  ADS  Google Scholar 

  8. Croom, S.M., Smith, R.J., Boyle, B.J., et al., The 2dF QSO Redshift Survey. XII. The Spectroscopic Catalogue and Luminosity Function, Mon. Notic. Roy. Astron. Soc., 2004, vol. 349, no. 4, pp. 1397–1418.

    Article  ADS  Google Scholar 

  9. Hamilton, A.J.S., Toward Better Ways To Measure the Galaxy Correlation Function, Astrophys. J., 1993, vol. 417, p. 19.

    Article  ADS  Google Scholar 

  10. Hawkins, E., Maddox, S., Cole, S., et al., The 2dF Galaxy Redshift Survey: Correlation Functions, Peculiar Velocities and the Matter Density of the Universe, Mon. Notic. Roy. Astron. Soc., 2003, vol. 346, no. 1, pp. 78–96.

    Article  ADS  Google Scholar 

  11. Hennawi, J.F., Sreauss, M.A., Ogury, M., et al., Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering at Small Angles, Astron. J., 2006, vol. 131(1), pp. 1–23.

    Article  ADS  Google Scholar 

  12. Ivashchenko, A.Yu. and Zhdanov, V.I., The Angular Correlation Function of Quasars from SDSS DR3, WDS’06 Proc. of Contributed Papers: Part III—Physics, Safrankova, J. and Pavlu, J., Eds., Prague: Matfyzpress, 2006, pp. 24–26.

    Google Scholar 

  13. Landy, S.D. and Szalay, A.S., Bias and Variance of Angular Correlation Functions, Astrophys. J., 1993, vol. 412, no. 1, pp. 64–71.

    Article  ADS  Google Scholar 

  14. Martinez, V.J. and Saar, E., Clustering Statistics in Cosmology, SPIE Proc.: Astron. Data Analysis II, Starck, J.-L. and Murtagh, F.D., Eds., 2002, vol. 4847, pp. 86–100.

  15. Myers, A.D., Brunner, R.J., Richards, G.T., et al., First Measurement of the Clustering Evolution of Photometrically Classified Quasars, Astrophys. J., 2006, vol. 638, no. 2, pp. 622–634.

    Article  ADS  Google Scholar 

  16. Porciani, C., Magliocchetti, M., and Norberg, P., Cosmic Evolution of Quasar Clustering: Implications for the Host Haloes, Mon. Notic. Roy. Astron. Soc., 2004, vol. 355, no. 3, pp. 1010–1030.

    Article  ADS  Google Scholar 

  17. Schneider, D.P., Hall, P.B., Richards, G.T., et al., The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release, Astron. J., 2005, vol. 130, no. 2, pp. 367–380.

    Article  ADS  Google Scholar 

  18. Spergel, D.N., Bean, R., Dore, O., et al., Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, arXiv:astro-ph/0603449.

  19. Zhdanov, V.I. and Surdej, J., Quasar Pairs with Arcminute Angular Separations, Astron. and Astrophys., 2001, vol. 372, no. 1–7.

  20. Zhdanov, V.I. and Surdej, J., Physical Grouping of Quasars from Veron-Cetty & Veron and 2dF Catalogs, Visnyk Kyiv. Un-tu. Ser. Astronomiia, 2003, vol. 39–40, pp. 78–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Zhdanov, A.Yu. Ivashchenko, 2008, published in Kinematika i Fizika Nebesnykh Tel, 2008, Vol. 24, No. 1, pp. 3–14.

About this article

Cite this article

Zhdanov, V.I., Ivashchenko, A.Y. Correlation function of quasars from SDSS DR3. Kinemat. Phys. Celest. Bodies 24, 1–9 (2008). https://doi.org/10.1007/s11963-008-1001-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11963-008-1001-y

PACS numbers

Navigation