Skip to main content

Methods for Practising Ethics in Research and Innovation: A Literature Review, Critical Analysis and Recommendations

Abstract

This paper provides a systematic literature review, analysis and discussion of methods that are proposed to practise ethics in research and innovation (R&I). Ethical considerations concerning the impacts of R&I are increasingly important, due to the quickening pace of technological innovation and the ubiquitous use of the outcomes of R&I processes in society. For this reason, several methods for practising ethics have been developed in different fields of R&I. The paper first of all presents a systematic search of academic sources that present and discuss such methods. Secondly, it provides a categorisation of these methods according to three main kinds: (1) ex ante methods, dealing with emerging technologies, (2) intra methods, dealing with technology design, and (3) ex post methods, dealing with ethical analysis of existing technologies. Thirdly, it discusses the methods by considering problems in the way they deal with the uncertainty of technological change, ethical technology design, the identification, analysis and resolving of ethical impacts of technologies and stakeholder participation. The results and discussion of our literature review are valuable for gaining an overview of the state of the art and serve as an outline of a future research agenda of methods for practising ethics in R&I.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. In line with Achterkamp and Vos (2008), a stakeholder is conceptualised as either a group or an individual who potentially affects or is affected by an ethical impact and/or has a vested interest in the R&I context to which the ethical impact is ascribed.

  2. For literature reviews that focus on RRI in general, or on the governance of science and technology, see for instance Burget et al. (2017), Forsberg et al. (2014), Landeweerd et al. (2015) and Stilgoe et al. (2013).

  3. Accessed through: http://apps.webofknowledge.com/.

  4. Accessed through: http://www.scopus.com/.

  5. Accessed through: http://link.springer.com/.

  6. This includes “the ethical Matrix”, “ETHICS”, “anticipatory ethics”, “ethical technology assessment”, “ethical impact assessment”, “ethical dilemma scenarios”, “value sensitive design”, “the SBU approach”, “the walkshop approach”, “ethical parallel research”, “just war theory”, “human practices approach” and “interactive technology assessment”.

  7. Three sources were left out of the final selection because they were not available (they used two different institutional subscription systems).

  8. Van den Hoven (2008) also typifies methods in computer ethics as “ex ante” (emphasis on design) and “ex post” (emphasis on evaluation of existing technologies). However, we introduce the “intra” type to distinguish between methods that focus on the design process in which the conceptual steps have already been taken (a general idea of the type of technology is already present) vis-à-vis “ex ante” methods that focus on technological systems, artefacts and applications that might be designed at some point but have not entered the design process yet.

  9. By targeted user is meant the type of person who would use the method when engaging with ethics in R&I. The user could also be termed an “assessor”, i.e., the person who is responsible for conducting an ethics assessment or review.

  10. It should be noted that Rehg’s version of discourse ethics could also be characterised as ex post, which would explain the greater focus on a variety of stakeholders.

References

  • Achterkamp, M. C., & Vos, J. F. J. (2008). Investigating the use of the stakeholder notion in project management literature, a meta-analysis. International Journal of Project Management, 26(7), 749–757. doi:10.1016/j.ijproman.2007.10.001.

    Article  Google Scholar 

  • Addissie, A., Davey, G., Newport, M. J., Addissie, T., MacGregor, H., Feleke, Y., et al. (2014). A mixed-methods study on perceptions towards use of rapid ethical assessment to improve informed consent processes for health research in a low-income setting. BMC Medical Ethics, 15(1), 35. doi:10.1186/1472-6939-15-35.

    Article  Google Scholar 

  • Adman, P., & Warren, L. (2000). Participatory sociotechnical design of organizations and information systems—An adaptation of ETHICS methodology. Journal of Information Technology, 15(1), 39–51. doi:10.1080/026839600344393.

    Article  Google Scholar 

  • Albrechtslund, A. (2007). Ethics and technology design. Ethics and Information Technology, 9(1), 63–72. doi:10.1007/s10676-006-9129-8.

    Article  Google Scholar 

  • Apel, K.-O. (1980). Towards a transformation of philosophy. (G. Adey and D. Frisby, Trans.). Routledge and Kegan Paul: London.

  • Arellano, L. E., Willett, J. M., & Borry, P. (2011). International survey on attitudes toward ethics in health technology assessment: An exploratory study. International Journal of Technology Assessment in Health Care, 27(1), 50–54. doi:10.1017/S0266462310001182.

    Article  Google Scholar 

  • Ashcroft, R. (1999). Ethics and health technology assessment. Monash Bioethics Review, 18(2), 15–24.

    Article  Google Scholar 

  • Autti-Ramo, I., & Makela, M. (2007). Ethical evaluation in health technology assessment reports: An eclectic approach. International Journal of Technology Assessment in Health Care, 23(1), 1–8. doi:10.1017/S0266462307051501.

    Article  Google Scholar 

  • Bailey, M., Dittrich, D., & Kenneally, E. (2013). Applying ethical principles to information and communication technology research: A companion to the menlo report, (October), 14. Retrieved from http://www.caida.org/publications/papers/2013/menlo_report_companion_actual_formatted/menlo_report_companion_actual_formatted.pdf.

  • Balmer, A. S., & Bulpin, K. J. (2013). Left to their own devices: Post-ELSI, ethical equipment and the international genetically engineered machine (iGEM) competition. BioSocieties, 8(3), 311–335. doi:10.1057/biosoc.2013.13.

    Article  Google Scholar 

  • Beauchamp, T. L., & Childress, J. F. (2001). Principles of biomedical ethics. Oxford: Oxford University Press.

    Google Scholar 

  • Beekman, V., & Brom, F. W. A. (2007). Ethical tools to support systematic public deliberations about the ethical aspects of agricultural biotechnologies. Journal of Agricultural and Environmental Ethics, 20(1), 3–12. doi:10.1007/s10806-006-9024-7.

    Article  Google Scholar 

  • Bitay, B., Brandtand, D., & Savelsberg, E. (2005). The global validity of ethics: Applying ethics to engineering and technology development. IFAC Proceedings Volumes (IFAC-PapersOnline), 16, 19–24.

    Article  Google Scholar 

  • Boenink, M., Swierstra, T., & Stemerding, D. (2010). Anticipating the interaction between technology and morality: A scenario study of experimenting with humans in bionanotechnology. Studies in Ethics, Law, and Technology, 4, 1. doi:10.2202/1941-6008.1098.

    Article  Google Scholar 

  • Bohn, J., Coroama, V., Langheinrich, M., & Mattern, M. (2005). Social, economic, and ethical implications of ambient intelligence and ubiquitous computing. Ambient Intelligence, 10(5), 5–29. doi:10.1007/3-540-27139-2_2.

    Article  Google Scholar 

  • Bombard, Y., Abelson, J., Simeonov, D., & Gauvin, F.-P. (2011). Eliciting ethical and social values in health technology assessment: A participatory approach. Social Science and Medicine, 73(1), 135–144. doi:10.1016/j.socscimed.2011.04.017.

    Article  Google Scholar 

  • Borning, A., & Muller, M. (2012). Next steps for value sensitive design. In Proceedings of the 2012 ACM annual conference on human factors in computing systems—CHI’12, (pp. 1–10).

  • Borup, M., Brown, N., Konrad, K., & Van Lente, H. (2006). The sociology of expectations in science and technology. Technology Analysis & Strategic Management, 18(3–4), 285–298. doi:10.1080/09537320600777002.

    Article  Google Scholar 

  • Bose, U. (2012). An ethical framework in information systems decision making using normative theories of business ethics. Ethics and Information Technology, 14(1), 17–26. doi:10.1007/s10676-011-9283-5.

    Article  Google Scholar 

  • Boucher, P., & Gough, C. (2012). Mapping the ethical landscape of carbon capture and storage. Poiesis Und Praxis, 9(3–4), 249–270. doi:10.1007/s10202-012-0117-2.

    Article  Google Scholar 

  • Brans, J. P. (2004). The management of the future Ethics in OR: Respect, multicriteria management, happiness. European Journal of Operational Research, 153(2), 466–467. doi:10.1016/S0377-2217(03)00166-8.

    Article  Google Scholar 

  • Braunack-Mayer, A. J. (2006). Ethics and health technology assessment: Handmaiden and/or critic? International Journal of Technology Assessment in Health Care, 22(3), 307–312. doi:10.1017/S0266462306051191.

    Article  Google Scholar 

  • Brey, P. (2000). Disclosive computer ethics: The exposure and evaluation of embedded normativity in computer technology. Computers and Society, 30(4), 10–16.

    Article  Google Scholar 

  • Brey, P. (2012a). Anticipating ethical issues in emerging IT. Ethics and Information Technology, 14, 305–317. doi:10.1007/s10676-012-9293-y.

    Article  Google Scholar 

  • Brey, P. (2012b). Anticipatory ethics for emerging technologies. NanoEthics, 6(1), 1–13. doi:10.1007/s11569-012-0141-7.

    Article  Google Scholar 

  • Bruijnis, M. R. N., Blok, V., Stassen, E. N., & Gremmen, H. G. J. (2015). Moral lock-in in responsible innovation: The ethical and social aspects of killing day-old chicks and its alternatives. Journal of Agricultural and Environmental Ethics, 28(5), 939–960. doi:10.1007/s10806-015-9566-7.

    Article  Google Scholar 

  • Burget, M., Bardone, E., & Pedaste, M. (2017). Definitions and conceptual dimensions of responsible research and innovation: A literature review. Science and Engineering Ethics, 23(1), 1–19. doi:10.1007/s11948-016-9782-1.

    Article  Google Scholar 

  • Burls, A., Caron, L., Cleret de Langavant, G., Dondorp, W., Harstall, C., Pathak-Sen, E., et al. (2011). Tackling ethical issues in health technology assessment: A proposed framework. International Journal of Technology Assessment in Health Care, 27(3), 230–237. doi:10.1017/S0266462311000250.

    Article  Google Scholar 

  • Carew, P. J., & Stapleton, L. (2013). Towards empathy: A human-centred analysis of rationality, ethics and praxis in systems development. AI & Society, 29(2), 149–166. doi:10.1007/s00146-013-0472-0.

    Article  Google Scholar 

  • Carpenter, K. J., & Dittrich, D. (2013). Bridging the distance: Removing the technology buffer and seeking consistent ethical analysis in computer security research. Journal of Chemical Information and Modeling, 53(9), 1689–1699. doi:10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  • Cotton, M. (2009). Evaluating the “ethical matrix” as a radioactive waste management deliberative decision-support tool. Environmental Values, 18(2), 153–176. doi:10.3197/096327109X438044.

    Article  Google Scholar 

  • Decker, M. (2004). The role of ethics in interdisciplinary technology assessment. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 2(2–3), 139–156. doi:10.1007/s10202-003-0047-0.

    Article  Google Scholar 

  • DeJean, D., Giacomini, M., Schwartz, L., & Miller, F. A. (2009). Ethics in Canadian health technology assessment: A descriptive review. International Journal of Technology Assessment in Health Care, 25(4), 463–469. doi:10.1017/S0266462309990390.

    Article  Google Scholar 

  • Doorn, N. (2012). Responsibility ascriptions in technology development and engineering: Three perspectives. Science and Engineering Ethics, 18(1), 69–90. doi:10.1007/s11948-009-9189-3.

    Article  Google Scholar 

  • Drake, M. J., Gerde, V. W., & Wasieleski, D. M. (2009). Socially responsible modeling: A stakeholder approach to the implementation of ethical modeling in operations research. OR Spectrum, 33(1), 1–26. doi:10.1007/s00291-009-0172-9.

    Article  Google Scholar 

  • Droste, S., Dintsios, C. M., & Gerber, A. (2010). Information on ethical issues in health technology assessment: How and where to find them. International Journal of Technology Assessment in Health Care, 26(4), 441–449. doi:10.1017/S0266462310000954.

    Article  Google Scholar 

  • Duthie, K., & Bond, K. (2011). Improving ethics analysis in health technology assessment. International Journal of Technology Assessment in Health Care, 27(1), 64–70. doi:10.1017/S0266462310001303.

    Article  Google Scholar 

  • Fassin, Y. (2000). Innovation and ethics ethical considerations in the innovation business. Journal of Business Ethics, 27(1/2), 193–203. doi:10.1023/A:1006427106307.

    Article  Google Scholar 

  • Felt, U., Fochler, M., Muller, A., & Strassnig, M. (2008). Unruly ethics: On the difficulties of a bottom-up approach to ethics in the field of genomics. Public Understanding of Science, 18(3), 354–371. doi:10.1177/0963662507079902.

    Article  Google Scholar 

  • Ferrari, A. (2010). Developments in the debate on nanoethics: Traditional approaches and the need for new kinds of analysis. NanoEthics, 4(1), 27–52. doi:10.1007/s11569-009-0081-z.

    Article  Google Scholar 

  • Flipse, S. M., van der Sanden, M. C. A., & Osseweijer, P. (2013). The why and how of enabling the integration of social and ethical aspects in research and development. Science and Engineering Ethics, 19(3), 703–725. doi:10.1007/s11948-012-9423-2.

    Article  Google Scholar 

  • Floridi, L. (2015). Tolerant paternalism: Pro-ethical design as a resolution of the dilemma of toleration. Science and Engineering Ethics. doi:10.1007/s11948-015-9733-2.

    Article  Google Scholar 

  • Foley, R. W., Bennett, I., & Wetmore, J. M. (2012). Practitioners’ views on responsibility: Applying nanoethics. NanoEthics, 6, 231–241. doi:10.1007/s11569-012-0154-2.

    Article  Google Scholar 

  • Forsberg, E. (2004). The ethical matrix—A tool for ethical assessments of biotechnology Ellen–Marie Forsberg. Global Bioethics. doi:10.1080/11287462.2004.10800856.

    Article  Google Scholar 

  • Forsberg, E. M. (2007). Pluralism, the ethical matrix, and coming to conclusions. Journal of Agricultural and Environmental Ethics, 20, 455–468. doi:10.1007/s10806-007-9050-0.

    Article  Google Scholar 

  • Forsberg, E. M., Thorstensen, E., Nielsen, R. Ø., & de Bakker, E. (2014). Assessments of emerging science and technologies: Mapping the landscape. Science and Public Policy, 41(3), 306–316. doi:10.1093/scipol/scu025.

    Article  Google Scholar 

  • Friedman, B. (1996). Value-sensitive design. Interactions, 3(6), 16–23. doi:10.1145/242485.242493.

    Article  Google Scholar 

  • Friedman, B., Kahn, P. H., & Borning, A. (2006). Value sensitive design and information systems. In K. E. Himma & H. T. Tavani (Eds.), Human–computer interaction and management information systems: Foundations (pp. 1–27). Hoboken, New Jersey: Wiley. doi:10.1145/242485.242493.

    Chapter  Google Scholar 

  • Gamborg, C. (2002). The acceptability of forest management practices: An analysis of ethical accounting and the ethical matrix. Forest Policy and Economics, 4(3), 175–186. doi:10.1016/S1389-9341(02)00007-2.

    Article  Google Scholar 

  • Genus, A. (2006). Rethinking constructive technology assessment as democratic, reflective, discourse. Technological Forecasting and Social Change, 73(1), 13–26. doi:10.1016/j.techfore.2005.06.009.

    Article  Google Scholar 

  • Geoghegan-Quinn, M. (2014). Responsible research & innovation. Brussels: European Union Publications Office.

    Google Scholar 

  • Graffigna, G., Bosio, A. C., & Olson, K. (2010). How do ethics assessments frame results of comparative qualitative research? A theory of technique approach. International Journal of Social Research Methodology, 13(4), 341–355. doi:10.1080/13645570903209076.

    Article  Google Scholar 

  • Groves, C. (2013). Horizons of Care: From Future Imaginaries to Responsible Research and Innovation. In K. Konrad, C. Coenen, A. Dijkstra, C. Milburn, & H. Van Lente (Eds.), Shaping emerging technologies: Governance, innovation, discourse (pp. 185–202). Berlin: IOS Press.

    Google Scholar 

  • Groves, C. (2015). Logic of choice or logic of care? Uncertainty. Technological Mediation and Responsible Innovation. NanoEthics, 9(3), 321–333. doi:10.1007/s11569-015-0238-x.

    Article  Google Scholar 

  • Grunwald, A. (2000). Against over-estimating the role of ethics in technology. Science and Engineering Ethics, 6(2), 181–196. doi:10.1007/s11948-000-0046-7.

    Article  Google Scholar 

  • Grunwald, A. (2001). The application of ethics to engineering and the engineer’s moral responsibility: Perspectives for a research agenda. Science and Engineering Ethics, 7(3), 415–428. doi:10.1007/s11948-001-0063-1.

    Article  Google Scholar 

  • Grunwald, A. (2004). The normative basis of (health) technology assessment and the role of ethical expertise. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 2, 175–193. doi:10.1007/s10202-003-0050-5.

    Article  Google Scholar 

  • Grunwald, A. (2011). Responsible innovation: Bringing together technology assessment, applied ethics, and STS research. Enterprise and Work Innovation Studies IET, 7, 9–31.

    Google Scholar 

  • Habermas, J. (1990). Moral consciousness and communicative action. (C. Lenhardt and S. W. Nicholsen Trans.). Cambridge: MIT Press.

  • Hauser, J., Tellis, G. J., & Griffin, A. (2006). Research on innovation: A review and agenda for marketing science. Marketing Science, 25(6), 687–717. doi:10.1287/mksc.1050.0144.

    Article  Google Scholar 

  • Heintz, E., Lintamo, L., Hultcrantz, M., Jacobson, S., Levi, R., Munthe, C., et al. (2015). Framework for systematic identification of ethical aspects of healthcare technologies: The Sbu approach. International Journal of Technology Assessment in Health Care, 31(3), 124–130. doi:10.1017/S0266462315000264.

    Article  Google Scholar 

  • Heleski, C. R., & Anthony, R. (2012). Science alone is not always enough: The importance of ethical assessment for a more comprehensive view of equine welfare. Journal of Veterinary Behavior: Clinical Applications and Research, 7(3), 169–178. doi:10.1016/j.jveb.2011.08.003.

    Article  Google Scholar 

  • Herkert, J. R. (2001). Future directions in engineering ethics research: Microethics, macroethics and the role of professional societies. Science and Engineering Ethics, 7(3), 403–414. doi:10.1007/s11948-001-0062-2.

    Article  Google Scholar 

  • Hirschheim, R., & Klein, H. K. (1994). Realizing emancipatory principles in information systems development: The case for ETHICS. MIS Quarterly, 18(1), 83–109. doi:10.2307/249611.

    Article  Google Scholar 

  • Hofmann, B. (2005a). On value-judgements and ethics in health technology assessment. Poiesis Und Praxis, 3(4), 277–295. doi:10.1007/s10202-005-0073-1.

    Article  Google Scholar 

  • Hofmann, B. (2005b). Toward a procedure for integrating moral issues in health technology assessment. International Journal of Technology Assessment in Health Care, 21(3), 312–318. doi:10.1017/S0266462305050415.

    Article  Google Scholar 

  • Hofmann, B. M. (2008). Why ethics should be part of health technology assessment. International Journal of Technology Assessment in Health Care, 24(4), 423–429. doi:10.1017/S0266462308080550.

    Article  Google Scholar 

  • Hofmann, B. (2014). Why not integrate ethics in HTA: Identification and assessment of the reasons. GMS Health Technology Assessment, 10, 1–9. doi:10.3205/hta000120.

    Article  Google Scholar 

  • Hofmann, B., Oortwijn, W., Cleemput, I., & Sacchini, D. (2014). Harmonization of ethics in health technology assessment: A revision of the socratic approach. International Journal of Technology Assessment in Health Care, 30(1), 3–9. doi:10.1017/S0266462313000688.

    Article  Google Scholar 

  • Hummels, H., & de Leede, J. (2000). Teamwork and morality: Comparing lean production and sociotechnology. Journal of Business Ethics, 26, 75–88. doi:10.1023/A:1006242516664.

    Article  Google Scholar 

  • Ihde, D. (1990). Technology and the lifeworld: From garden to earth. Bloomington and Indianapolis: Indiana University Press.

    Google Scholar 

  • Ikonen, V., & Kaasinen, E. (2008). Ethical assessment of future-oriented design scenarios. In T. W. Bynum, M. Calzarossa, I. de Lotto & S. Rogerson (Eds.), Ethicomp 2008, Pavia (pp. 433–445). Pavia: University of Pavia.

    Google Scholar 

  • Ikonen, V., Kaasinen, E., Heikkilä, P., & Niemelä, M. (2012). Human-driven design of micro- and nanotechnology based future sensor systems. Journal of Information, Communication and Ethics in Society, 13(2), 110–129. doi:10.1108/JICES-07-2013-0021.

    Article  Google Scholar 

  • Jensen, K. K., Forsberg, E. M., Gamborg, C., Millar, K., & Sandøe, P. (2011). Facilitating ethical reflection among scientists using the ethical matrix. Science and Engineering Ethics, 17(3), 425–445. doi:10.1007/s11948-010-9218-2.

    Article  Google Scholar 

  • Kaiser, M., Millar, K., Thorstensen, E., & Tomkins, S. (2007). Developing the ethical matrix as a decision support framework: GM fish as a case study. Journal of Agricultural and Environmental Ethics, 20(1), 65–80. doi:10.1007/s10806-006-9023-8.

    Article  Google Scholar 

  • Kajikawa, Y., Usui, O., Hakata, K., Yasunaga, Y., & Matsushima, K. (2008). Structure of knowledge in the science and technology roadmaps. Technological Forecasting and Social Change, 75(1), 1–11. doi:10.1016/j.techfore.2007.02.011.

    Article  Google Scholar 

  • Karafyllis, N. C. (2009). Facts or fiction? A critique on vision assessment as a tool for technology assessment. In P. Sollie & M. Duwell (Eds.), Evaluating new technologies: Methodological problems for the ethical assessment of technology developments. Heidelberg: Springer. doi:10.1007/s13398-014-0173-7.2.

    Chapter  Google Scholar 

  • Kaufman, S. R., Shim, J. K., & Russ, A. J. (2004). Revisiting the biomedicalization of aging: Clinical trends and ethical challenges. The Gerontologist, 44(6), 731–738. doi:10.1093/geront/44.6.731.

    Article  Google Scholar 

  • Landeweerd, L., Townend, D., Mesman, J., & Van Hoyweghen, I. (2015). Reflections on different governance styles in regulating science: a contribution to “Responsible Research and Innovation”. Life Sciences, Society and Policy, 11(8), 1–22. doi:10.1186/s40504-015-0026-y.

    Article  Google Scholar 

  • Latour, B. (1994). On technical mediation—Philosophy, sociology, genealogy. Common Knowledge, 3(2), 29–64. doi:10.1111/j.1365-294X.2010.04747.x.

    Article  Google Scholar 

  • Le Dantec, C. A., Poole, E. S., & Wyche, S. P. (2009). Values as lived experience: Evolving value sensitive design in support of value discovery. In Proceedings of the 27th international conference on human factors in computing systems (CHI’09), (pp. 1141–1150).

  • Lehoux, P., & Williams-Jones, B. (2007). Mapping the integration of social and ethical issues in health technology assessment. International Journal of Technology Assessment in Health Care, 1, 9–16. doi:10.1017/s0266462307051513.

    Article  Google Scholar 

  • Leitch, S., & Warren, M. J. (2010). ETHICS: The past, present and future of socio-technical systems design. In: A. Tatnall (Ed.), History of computing. Learning from the past (pp. 189–197). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Light, B., & McGrath, K. (2010). Ethics and social networking sites: A disclosive analysis of facebook. Information Technology and People, 23(4), 290–311.

    Article  Google Scholar 

  • Lindfelt, L.-L., & Tornroos, J.-A. (2006). Ethics and value creation in business research: Comparing two approaches. European Journal of Marketing, 40(3/4), 328–351.

    Article  Google Scholar 

  • Lucivero, F., Swierstra, T., & Boenink, M. (2011). Assessing expectations: Towards a toolbox for an ethics of emerging technologies. NanoEthics, 5, 129–141. doi:10.1007/s11569-011-0119-x.

    Article  Google Scholar 

  • Malsch, I. (2013). The just war theory and the ethical governance of research. Science and Engineering Ethics, 19(2), 461–486. doi:10.1007/s11948-012-9357-8.

    Article  Google Scholar 

  • Manders-Huits, N. (2011). What values in design? The challenge of incorporating moral values into design. Science and Engineering Ethics, 17(2), 271–287. doi:10.1007/s11948-010-9198-2.

    Article  Google Scholar 

  • Manders-Huits, N., & Van den Hoven, J. (2009). The need for a value-sensitive design of communication infrastructures. In P. Sollie & M. Duwell (Eds.), Evaluating new technologies: Methodological problems for the ethical assessment of technology developments. Heidelberg: Springer. doi:10.1007/s13398-014-0173-7.2.

    Chapter  Google Scholar 

  • Markus, M. L., & Mentzer, K. (2014). Foresight for a responsible future with ICT. Information Systems Frontiers, 16, 353–368. doi:10.1007/s10796-013-9479-9.

    Article  Google Scholar 

  • Masclet, L., & Goujon, P. (2012). Implementing ethics in information systems, presuppositions and consequences in ethics and information systems. In Magda David Hercheui; Diane Whitehouse; William McIver; Jackie Phahlamohlaka. 10th International Conference on Human Choice and Computers (HCC), Sep 2012, Amsterdam, Netherlands. Springer, IFIP Advances in Information and Communication Technology, AICT-386 (pp. 287–298), 2012, ICT Critical Infrastructures and Society.

    Chapter  Google Scholar 

  • Mepham, B. (2000). A framework for the ethical analysis of novel foods: The ethical matrix. Journal of Agricultural and Environmental Ethics, 12(2), 165–176. doi:10.1023/A:1009542714497.

    Article  Google Scholar 

  • Mepham, B., Kaiser, M., Thorstensen, E., Tomkins, S., & Millar, K. (2006). Ethical matrix manual. The Hague: LEI.

    Google Scholar 

  • Mingers, J., & Walsham, G. (2010). Toward ethical information systems: The contribution of discourse ethics. MIS Quarterly, 34(4), 833–854.

    Article  Google Scholar 

  • Mitcham, C. (1999). Why science, technology, and society studies? Bulletin of Science and Technology in Society, 19(2), 128–134.

    Article  Google Scholar 

  • Mittelstadt, B. D., Stahl, B. C., & Fairweather, N. Ben. (2015). How to shape a better future? Epistemic difficulties for ethical assessment and anticipatory governance of emerging technologies. Ethical Theory and Moral Practice. doi:10.1007/s10677-015-9582-8.

    Article  Google Scholar 

  • Mumford, E. (1995). Effective systems design and requirements analysis—The ethics approach. London: Macmillan Press Ltd. doi:10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  • Nickles, T. (1987). Methodology, heuristics, and rationality. In J. C. Pitt & M. Pera (Eds.), Rational changes in science. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Niemela, M., Ikonen, V., Leikas, J., Kantola, K., Kulju, M., Tammela, A., et al. (2014). Human-driven design: A human-driven approach to the design of technology. IFIP Advances in Information and Communication Technology, 431, 78–91. doi:10.1007/978-3-662-44208-1_8.

    Article  Google Scholar 

  • Nordmann, A. (2007). If and then: A critique of speculative nanoethics. NanoEthics, 1(1), 31–46. doi:10.1007/s11569-007-0007-6.

    Article  Google Scholar 

  • Owen, R., Macnaghten, P., & Stilgoe, J. (2012). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39(6), 751–760. doi:10.1093/scipol/scs093.

    Article  Google Scholar 

  • Page, K. (2012). The four principles: can they be measured and do they predict ethical decision making? BMC Medical Ethics, 13(1), 10. doi:10.1186/1472-6939-13-10.

    Article  Google Scholar 

  • Palm, E., & Hansson, S. O. (2006). The case for ethical technology assessment (eTA). Technological Forecasting and Social Change, 73(5), 543–558. doi:10.1016/j.techfore.2005.06.002.

    Article  Google Scholar 

  • Pandza, K., & Ellwood, P. (2013). Strategic and ethical foundations for responsible innovation. Research Policy, 42(5), 1112–1125. doi:10.1016/j.respol.2013.02.007.

    Article  Google Scholar 

  • Patenaude, J., Legault, G.-A., Beauvais, J., Bernier, L., Béland, J.-P., Boissy, P., et al. (2015). Framework for the analysis of nanotechnologies’ impacts and ethical acceptability: basis of an interdisciplinary approach to assessing novel technologies. Science and Engineering Ethics, 21(2), 293–315. doi:10.1007/s11948-014-9543-y.

    Article  Google Scholar 

  • Polonsky, M. J. (1998). Incorporating ethics into business students’ research projects: A process approach. Journal of Business Ethics, 17(11), 1227–1241.

    Article  Google Scholar 

  • Potter, B. K., Avard, D., Graham, I. D., Entwistle, V. A., Caulfield, T. A., Chakraborty, P., et al. (2008). Guidance for considering ethical, legal, and social issues in health technology assessment: Application to genetic screening. International Journal of Technology Assessment in Health Care, 24(4), 412–422. doi:10.1017/S0266462308080549.

    Article  Google Scholar 

  • Rainey, S., & Goujon, P. (2011). Toward a normative ethics for technology development. Journal of Information, Communication and Ethics in Society Society, 9(3), 157–179. doi:10.1108/JICES-07-2013-0021.

    Article  Google Scholar 

  • Reed, G. S., & Jones, N. (2013). Toward modeling and automating ethical decision making: Design, implementation, limitations, and responsibilities. Topoi, 32(2), 237–250. doi:10.1007/s11245-012-9127-x.

    Article  Google Scholar 

  • Rehg, W. (2015). Discourse ethics for computer ethics: A heuristic for engaged dialogical reflection. Ethics and Information Technology, 17(1), 27–39. doi:10.1007/s10676-014-9359-0.

    Article  Google Scholar 

  • Reiter-Theil, S. (2004). Does empirical research make bioethics more relevant? “The embedded researcher” as a methodological approach. Medicine, Health Care and Philosophy, 7(1), 17–29. doi:10.1023/B:MHEP.0000021846.20508.c8.

    Article  Google Scholar 

  • Riley, D. (2013). Hidden in plain view: Feminists doing engineering ethics, engineers doing feminist ethics. Science and Engineering Ethics, 19, 189–206. doi:10.1007/s11948-011-9320-0.

    Article  Google Scholar 

  • Roberts, L. W. (1999). Ethical dimensions of psychiatric research: A constructive, criterion-based approach to protocol preparation. The research protocol ethics assessment tool (RePEAT). Biological Psychiatry, 46(8), 1106–1119. doi:10.1016/S0006-3223(99)00146-8.

    Article  Google Scholar 

  • Roberts, E. B. (2007). Managing invention and innovation. Research Technology Management, 50(1), 35–54. doi:10.1038/427679a.

    Article  Google Scholar 

  • Rommetveit, K., Gunnarsdóttir, K., Jepsen, K. S., Bertilsson, T. M., Verrax, F., & Strand, R. (2013). The Technolife project: an experimental approach to new ethical frameworks for emerging science and technology. International Journal of Sustainable Development, 16(1/2), 23–45. doi:10.1504/IJSD.2013.053789.

    Article  Google Scholar 

  • Saarni, S. I., Braunack-Mayer, A., Hofmann, B., & Van Der Wilt, G. J. (2011). Different methods for ethical analysis in health technology assessment: An empirical study. International Journal of Technology Assessment in Health Care, 27(4), 305–312. doi:10.1017/S0266462311000444.

    Article  Google Scholar 

  • Sacchini, D., Virdis, A., Refolo, P., Pennacchini, M., & de Paula, I. C. (2009). Health technology assessment (HTA): Ethical aspects. Medicine, Health Care and Philosophy, 12(4), 453–457. doi:10.1007/s11019-009-9206-y.

    Article  Google Scholar 

  • Sandman, L., & Heintz, E. (2014). Assessment vs. appraisal of ethical aspects of health technology assessment: Can the distinction be upheld? GMS Health Technology Assessment, 10, 05. doi:10.3205/hta000121.

    Article  Google Scholar 

  • Sassaman, L. (2010). Ethical guidelines for computer security researchers: “Be reasonable.” In: International conference on financial cryptography and data security (pp. 250–255). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schroeder, D., & Palmer, C. A. (2003). Technology assessment and the ethical matrix. Poiesis & Praxis, 1, 295–307. doi:10.1007/s10202-003-0027-4.

    Article  Google Scholar 

  • Schumacher, E. G., & Wasieleski, D. M. (2013). Institutionalizing ethical innovation in organizations: An integrated causal model of moral innovation decision processes. Journal of Business Ethics, 113(1), 15–37. doi:10.1007/s10551-012-1277-7.

    Article  Google Scholar 

  • Schummer, J. (2004). Societal and ethical impliations of nanotechnology—Meanings, interest groups, and social dynamics. Techne, 8, 56–87.

    Google Scholar 

  • Shilton, K. (2014). This is an intervention: Foregrounding and operationalizing ethics during technology design. In K. D. Pimple (Ed.), Emerging pervasive information and communication technologies (PICT) (pp. 176–192). Heidelberg: Springer. doi:10.1007/978-94-007-6833-8.

    Chapter  Google Scholar 

  • Singh, R., Wood, B., & Wood-Harper, T. (2007). Socio-technical design of the 21st century: A vision. IFIP International Federation for Information Processing, 235, 503–506. doi:10.1007/978-0-387-72804-9_39.

    Article  Google Scholar 

  • Skorupinski, B., & Ott, K. (2002). Technology assessment and ethics. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 1, 95–122. doi:10.1007/s102020100010.

    Article  Google Scholar 

  • Sollie, P. (2007). Ethics, technology development and uncertainty: an outline for any future ethics of technology. Journal of Information, Communication and Ethics in Society, 5(4), 293–306. doi:10.1108/14779960710846155.

    Article  Google Scholar 

  • Spahn, A. (2015). Mediation in design for values. In J. van den Hoven, P. E. Vermaas, & I. van de Poel (Eds.), Handbook of ethics, values, and technological design: Sources, theory, values and application domains (pp. 251–266). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Stahl, B. C. (2007). ETHICS, morality and critique: An essay on Mumford’s socio-technical approach. Journal of the Association for Information Systems, 8(9), 479–490.

    Article  Google Scholar 

  • Stahl, B. C. (2011). IT for a better future: How to integrate ethics, politics and innovation. Journal of Information, Communication and Ethics in Society, 9(3), 140–156. doi:10.1108/14779961111167630.

    Article  Google Scholar 

  • Stahl, B. C. (2013). Virtual suicide and other ethical issues of emerging information technologies. Futures, 50, 35–43. doi:10.1016/j.futures.2013.03.004.

    Article  Google Scholar 

  • Stahl, B. C., Heersmink, R., Goujon, P., Flick, C., van den Hoven, J., Wakunuma, K., et al. (2010). Identifying the ethics of emerging information and communication technologies. International Journal of Technoethics, 1(4), 20–38. doi:10.4018/jte.2010100102.

    Article  Google Scholar 

  • Stahl, B. C., McBride, N., Wakunuma, K., & Flick, C. (2014). The empathic care robot: A prototype of responsible research and innovation. Technological Forecasting and Social Change, 84, 74–85. doi:10.1016/j.techfore.2013.08.001.

    Article  Google Scholar 

  • Stapleton, L. (2008). Ethical decision making in technology development: A case study of participation in a large-scale information systems development project. AI & SOCIETY, 22(3), 405–429. doi:10.1007/s00146-007-0150-1.

    Article  Google Scholar 

  • Stilgoe, J., Owen, R., & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42(9), 1568–1580. doi:10.1016/j.respol.2013.05.008.

    Article  Google Scholar 

  • Swierstra, T., & Rip, A. (2007). Nano-ethics as NEST-ethics: Patterns of moral argumentation about new and emerging science and technology. NanoEthics, 1(1), 3–20. doi:10.1007/s11569-007-0005-8.

    Article  Google Scholar 

  • Tavani, H. T. (2013). Ethics and technology: Controversies, questions, and strategies for ethical computing. New York: John Wiley & Sons, Inc. doi:10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  • Ten Have, H. (1995). Medical technology assessment and ethics. Ambivalent relations. Hastings Center Report, 25(5), 13–19.

    Article  Google Scholar 

  • Ten Have, H. (2004). Ethical perspectives on health technology assessment. International Journal of Technology Assessment in Health Care, 1, 71–76.

    Article  Google Scholar 

  • Ten Have, H. (2014). Theoretical models and approaches to ethics. In H. ten Have & B. Gordijn (Eds.), Bioethics in a European perspective (pp. 1–5). Dordrecht: Springer. doi:10.1007/s13398-014-0173-7.2.

    Chapter  Google Scholar 

  • Thorstensen, E. (2014). Public involvement and narrative fallacies of nanotechnologies. NanoEthics, 8(3), 227–240. doi:10.1007/s11569-014-0202-1.

    Article  Google Scholar 

  • Vallor, S. (2016). Technology and the virtues. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Van de Poel, I. (2008). How should we do nanoethics? A network approach for discerning ethical issues in nanotechnology. NanoEthics, 2, 25–38. doi:10.1007/s11569-008-0026-y.

    Article  Google Scholar 

  • Van de Poel, I. (2009). Values in engineering design. Philosophy of technology and engineering sciences. In: A. Meijers (Ed.), Handbook of the philosophy of science (pp. 973–1006). Amsterdam: Elsevier. doi:10.1016/B978-0-444-51667-1.50040-9.

    Book  Google Scholar 

  • Van de Poel, I. (2013). Translating values into design requirements. In D. Michelfelder, N. McCarthy, & D. Goldberg (Eds.), Philosophy and engineering: Reflections on practice, principles and process. Philosophy of Engineering and Technology (Vol. 15). Dordrecht: Springer.

    Google Scholar 

  • Van den Hoven, J. (2007). ICT and value sensitive design. In P. Goujon, S. Lavelle, P. Duquenoy, K. Kimppa, & V. Laurent (Eds.), IFIP international federation for information processing (Vol. 233, pp. 75–83). Boston: Springer. doi:10.1002/9781118551424.ch4.

    Chapter  Google Scholar 

  • Van den Hoven, J. (2008). Moral methodology and information technology. In K. E. Himma & H. T. Tavani (Eds.), The handbook of information systems research. Hoboken: Wiley. doi:10.4018/978-1-59140-144-5.

    Chapter  Google Scholar 

  • Van den Hoven, J., & Manders-Huits, N. (2009). Value-sensitive design. In J. Kyrre, B. Olsen, & V. F. Hendricks (Eds.), A companion to the philosophy of technology. Malden: Blackwell Publishing. doi:10.1002/9781444310795.ch1.

    Chapter  Google Scholar 

  • Van der Wilt, G. J., Reuzel, R., & Grin, J. (2015). Design for values in healthcare technology. In J. van den Hoven, P. E. Vermaas & I. van de Poel (Eds.), Handbook of ethics, values, and technological design: Sources, theory, values and application domains (pp. 1–871). Heidelberg: Springer.

  • Van Gorp, A. (2005). Ethical issues in engineering design: Safety and sustainability. Simon Stevin Series in the Philosophy of Technology. PhD Thesis, University of Delft.

  • Van Gorp, A. (2009). Ethics in and during technological research; An addition to IT ethics and science ethics. In P. Sollie & M. Düwell (Eds.), Evaluating new technologies (pp. 35–49). Heidelberg: Springer.

  • van Gorp, A., & van der Molen, S. (2011). Parallel, embedded or just part of the team: Ethicists cooperating within a European security research project. Science and Engineering Ethics, 17(1), 31–43. doi:10.1007/s11948-009-9187-5.

    Article  Google Scholar 

  • Van Wynsberghe, A. (2013). Designing robots for care: Care centered value-sensitive design. Science and Engineering Ethics, 19(2), 407–433. doi:10.1007/s11948-011-9343-6.

    Article  Google Scholar 

  • Van Wynsberghe, A., & Robbins, S. (2013). Ethicist as designer: A pragmatic approach to ethics in the lab. Science and Engineering Ethics. doi:10.1007/s11948-013-9498-4.

    Article  Google Scholar 

  • Verbeek, P.-P. (2005). What things do; philosophical reflections on technology, agency, and design. Pennsylvania: Pennsylvania University Press.

    Google Scholar 

  • Verbeek, P.-P. (2006). Materializing morality. Science, Technology and Human Values, 31(3), 361–380. doi:10.1177/0162243905285847.

    Article  Google Scholar 

  • Verbeek, P.-P. (2008). Morality in design: Design ethics and the morality of technological artifacts. In: P. Kroes, P. Vermaas, A. Light & S. Moore (Eds.), Philosophy and design. Dordrecht: Springer.

    Google Scholar 

  • Verharen, C. C., & Tharakan, J. (2010). Barefoot ethics: Social justice through an appropriate technology checklist. In V. Dzikzeniyo (Ed.), Proceedings of the 4th international conference on appropriate technology (pp. 1–179).

  • Verharen, C., Tharakan, J., Middendorf, G., Castro-Sitiriche, M., & Kadoda, G. (2013). Introducing survival ethics into engineering education and practice. Science and Engineering Ethics, 19(2), 599–623. doi:10.1007/s11948-011-9332-9.

    Article  Google Scholar 

  • Viseu, A., & Maguire, H. (2012). Integrating and enacting “social and ethical issues” in nanotechnology practices. NanoEthics, 6(3), 195–209. doi:10.1007/s11569-012-0162-2.

    Article  Google Scholar 

  • Wakunuma, K. J., & Stahl, B. C. (2014). Tomorrow’s ethics and today’s response: An investigation into the ways information systems professionals perceive and address emerging ethical issues. Information Systems Frontiers, 16(3), 383–397. doi:10.1007/s10796-014-9490-9.

    Article  Google Scholar 

  • Wenstøp, F., & Koppang, H. (2009). On operations research and value conflicts. Omega, 37(6), 1109–1120. doi:10.1016/j.omega.2008.10.001.

    Article  Google Scholar 

  • Whitbeck, C. (2011). Ethics in engineering practice and research (pp. 351–378). Retrieved from https://books.google.com/books?id=jonM_OFtXAIC&pgis=1.

  • Whiting, T. L. (2004). Application of the ethical matrix in evaluation of the question of downer cattle transport. In: Proceedings CanWest Veterinary Conference, October 2–5, 2004. Banff: Alberta and British Columbia Veterinary Medical Associations.

  • Wickson, F., & Forsberg, E. M. (2014). Standardising responsibility? The significance of interstitial spaces. Science and Engineering Ethics, 21(5), 1159–1180. doi:10.1007/s11948-014-9602-4.

    Article  Google Scholar 

  • Wickson, F., Strand, R., & Kjølberg, K. L. (2015). The walkshop approach to science and technology ethics. Science and Engineering Ethics, 21(1), 241–264. doi:10.1007/s11948-014-9526-z.

    Article  Google Scholar 

  • Winkler, E. C., Hiddemann, W., & Marckmann, G. (2011). Ethical assessment of life-prolonging treatment. The lancet Oncology, 12(8), 720–722. doi:10.1016/S1470-2045(11)70148-6.

    Article  Google Scholar 

  • Winner, L. (1980). Do artifacts have politics? Daedalus, 109(1), 121–136. doi:10.2307/20024652.

    Article  Google Scholar 

  • Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software engineering. In 18th international conference on evaluation and assessment in software engineering (EASE 2014) (pp. 1–10).

  • Wong, E., & Tate, G. (1994). A study of user participation in information systems development. Journal of Information Technology. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.228&rep=rep1&type=pdf.

  • Wright, D. (2011). A framework for the ethical impact assessment of information technology. Ethics and Information Technology, 13, 199–226. doi:10.1007/s10676-010-9242-6.

    Article  Google Scholar 

  • Wright, D. (2014). Ethical impact assessment. Ethics, Science, Technology, and Engineering, 163(c), 163–167. doi:10.1016/j.clsr.2011.11.007.

    Article  Google Scholar 

  • Wright, D., Finn, R., Gellert, R., Gutwirth, S., Schütz, P., Friedewald, M., et al. (2014). Ethical dilemma scenarios and emerging technologies. Technological Forecasting and Social Change, 87, 325–336. doi:10.1016/j.techfore.2013.12.008.

    Article  Google Scholar 

  • Wright, D., & Friedewald, M. (2013). Integrating privacy and ethical impact assessments. Science and Public Policy, 40(6), 740–754. doi:10.1093/scipol/sct083.

    Article  Google Scholar 

  • Zwart, H., Landeweerd, L., & van Rooij, A. (2014). Adapt or perish? Assessing the recent shift in the European research funding arena from “ELSA” to “RRI”. Life Sciences, Society and Policy, 10(1), 1–19. doi:10.1186/s40504-014-0011-x.

    Article  Google Scholar 

  • Zwart, S. D., van de Poel, I., van Mil, H., & Brumsen, M. (2006). A network approach for distinguishing ethical issues in research and development. Science and Engineering Ethics, 12(4), 663–684.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the ADAPT Centre. The ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund. This research was partly conducted in the context of the project: Stakeholders Acting Together on the Ethical Impact Assessment of Research and Innovation—SATORI—which received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 612231. The views expressed in this article are those of the authors alone and are in no way intended to represent those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wessel Reijers.

Appendix

Appendix

See Table 4.

Table 4 Overview of all the useful sources selected in this literature review

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reijers, W., Wright, D., Brey, P. et al. Methods for Practising Ethics in Research and Innovation: A Literature Review, Critical Analysis and Recommendations. Sci Eng Ethics 24, 1437–1481 (2018). https://doi.org/10.1007/s11948-017-9961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11948-017-9961-8

Keywords

  • Practising ethics
  • Research and innovation
  • Ethics of technology
  • Ethics assessment
  • Ethical impact assessment