Uncovering a New Moral Dilemma of Economic Optimization in Biotechnological Processing

  • Marek Vochozka
  • Vojtěch Stehel
  • Anna Maroušková
Opinion
  • 97 Downloads

Abstract

The trend of emerging biorefineries is to process the harvest as efficiently as possible and without any waste. From the most valuable phytomass, refined medicines, enzymes, dyes and other special reactants are created. Functional foods, food ingredients, oils, alcohol, solvents, plastics, fillers and a wide variety of other chemical products follow. After being treated with nutrient recovery techniques (for fertilizer production), biofuels or soil improvers are produced from the leftovers. Economic optimization algorithms have confirmed that such complex biorefineries can be financially viable only when a high degree of feedstock concentration is included. Because the plant material is extremely voluminous before processing, the farming intensity of special plants increases in the nearest vicinity of agglomerations where the biorefineries are built for logistical reasons. Interdisciplinary analyses revealed that these optimization measures lead to significantly increased pollen levels in neighbouring urban areas and subsequently an increased risk of allergies, respectively costs to the national health system. A new moral dilemma between the shareholder’s profit and public interest was uncovered and subjected to disputation.

Keywords

Public health costs Moral dilemma Bioeconomy Financial optimization Logistics 

References

  1. Bartholow, A., Pleskovic, N., Drori, J., & Skoner, D. P. (2014). Review of the use of sublingual allergen immunotherapy in children. Pediatric Allergy, Immunology, and Pulmonology, 27(1), 3–7.CrossRefGoogle Scholar
  2. Bikker, P., Krimpen, M. M., Wikselaar, P., Houweling-Tan, B., Scaccia, N., Hal, J. W., et al. (2016). Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology, 28(6), 3511–3525.CrossRefGoogle Scholar
  3. Boelt, B., & Studer, B. (2010). Breeding for grass seed yield. In B. Boller et al. (Eds.), Fodder crops and amenity grasses (pp. 161–174). New York, NY: Springer.CrossRefGoogle Scholar
  4. Castelli, D., Colin, L., Camel, E., & Ries, G. (1998). Pretreatment of skin with a Ginkgo biloba extract/sodium carboxymethyl-β-1, 3-glucan formulation appears to inhibit the elicitation of allergic contact dermatitis in man. Contact dermatitis, 38(3), 123–126.CrossRefGoogle Scholar
  5. Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421.CrossRefGoogle Scholar
  6. Cherubini, F., & Ulgiati, S. (2010). Crop residues as raw materials for biorefinery systems—A LCA case study. Applied Energy, 87(1), 47–57.CrossRefGoogle Scholar
  7. Ciprandi, G., & Fuchs, D. (2012). Tryptophan, neopterin, and nitrite in allergy. Allergy, 67(8), 1083.CrossRefGoogle Scholar
  8. D’amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  9. Eranki, P. L., Bals, B. D., & Dale, B. E. (2011). Advanced regional biomass processing depots: A key to the logistical challenges of the cellulosic biofuel industry. Biofuels, Bioproducts and Biorefining, 5(6), 621–630.CrossRefGoogle Scholar
  10. FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915–8922.CrossRefGoogle Scholar
  11. Haban, M., Otepka, P., Kobida, L., & Habanova, M. (2009). Production and quality of milk thistle (Silybum marianum [L.] Gaertn.) cultivated in cultural conditions of warm agri-climatic macroregion. Horticultural Science, 36(2), 69–74.Google Scholar
  12. Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K. H., & Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2(5), 394–403.CrossRefGoogle Scholar
  13. Huang, H. J., Ramaswamy, S., Tschirner, U. W., & Ramarao, B. V. (2008). A review of separation technologies in current and future biorefineries. Separation and Purification Technology, 62(1), 1–21.CrossRefGoogle Scholar
  14. Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137–145.CrossRefGoogle Scholar
  15. Kim, N. C., Graf, T. N., Sparacino, C. M., Wani, M. C., & Wall, M. E. (2003). Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Organic and Biomolecular Chemistry, 1(10), 1684–1689.CrossRefGoogle Scholar
  16. Makra, L., Juhász, M., Béczi, R., & Borsos, E. K. (2005). The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana, 44(1), 57–64.CrossRefGoogle Scholar
  17. Mardoyan, A., & Braun, P. (2015). Analysis of Czech subsidies for solid biofuels. International Journal of Green Energy, 12(4), 405–408.CrossRefGoogle Scholar
  18. Maroušek, J. (2012). Finding the optimal parameters for the steam explosion process of hay. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 35(2), 170–178.Google Scholar
  19. Maroušek, J. (2013a). Removal of hardly fermentable ballast from the maize silage to accelerate biogas production. Industrial Crops and Products, 44, 253–257.CrossRefGoogle Scholar
  20. Maroušek, J. (2013b). Study on agriculture decision-makers behavior on sustainable energy utilization. Journal of Agricultural and Environmental Ethics, 26(3), 679–689.CrossRefGoogle Scholar
  21. Maroušek, J. (2014a). Significant breakthrough in biochar cost reduction. Clean Technologies and Environmental Policy, 16(8), 1821–1825.CrossRefGoogle Scholar
  22. Maroušek, J. (2014b). Economically oriented process optimization in waste management. Environmental Science and Pollution Research, 21(12), 7400–7402.CrossRefGoogle Scholar
  23. Maroušek, J. (2015). Economic analysis of the pressure shockwave disintegration process. International Journal of Green Energy, 12(12), 1232–1235.CrossRefGoogle Scholar
  24. Maroušek, J., Hašková, S., Maroušková, A., Myšková, K., Vaníčková, R., Váchal, J., et al. (2015). Financial and biotechnological assessment of new oil extraction technology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(16), 1723–1728.CrossRefGoogle Scholar
  25. Maroušek, J., Hašková, S., Zeman, R., Žák, J., Vaníčková, R., Maroušková, A., et al. (2016). Polemics on ethical aspects in the compost business. Science and Engineering Ethics, 22(2), 581–590.CrossRefGoogle Scholar
  26. Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56.CrossRefGoogle Scholar
  27. Pin, J. M., Guigo, N., Mija, A., Vincent, L., Sbirrazzuoli, N., van der Waal, J. C., et al. (2014). Valorization of biorefinery side-stream products: Combination of humins with polyfurfuryl alcohol for composite elaboration. ACS Sustainable Chemistry and Engineering, 2(9), 2182–2190.CrossRefGoogle Scholar
  28. Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., et al. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), 1246843.CrossRefGoogle Scholar
  29. Ratajová, A. (2014). Study on the dynamics of grass microgametophytes from urban vegetation. Environmental Science and Pollution Research, 21(9), 6218–6220.CrossRefGoogle Scholar
  30. Sannigrahi, P., Pu, Y., & Ragauskas, A. (2010). Cellulosic biorefineries—Unleashing lignin opportunities. Current Opinion in Environmental Sustainability, 2(5), 383–393.CrossRefGoogle Scholar
  31. Scott, L., Cadman, A., & McMillan, I. (2006). Early history of Cainozoic Asteraceae along the Southern African west coast. Review of Palaeobotany and Palynology, 142(1), 47–52.CrossRefGoogle Scholar
  32. Shaik, Y. B., Castellani, M. L., Perrella, A., Conti, F., Salini, V., Tete, S., et al. (2005). Role of quercetin (a natural herbal compound) in allergy and inflammation. Journal of Biological Regulators and Homeostatic Agents, 20(3–4), 47–52.Google Scholar
  33. Trevino, L. K., Hartman, L. P., & Brown, M. (2000). Moral person and moral manager: How executives develop a reputation for ethical leadership. California Management Review, 42(4), 128–142.CrossRefGoogle Scholar
  34. Vaid, M., & Katiyar, S. K. (2010). Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review). International Journal of Oncology, 36(5), 1053–1060.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Marek Vochozka
    • 1
  • Vojtěch Stehel
    • 1
  • Anna Maroušková
    • 1
  1. 1.The Institute of Technology and Business in České BudějoviceČeské BudějoviceCzech Republic

Personalised recommendations