Abstract
Protein hydrolysates have become key ingredients in food sector that govern both nutritional and functional behavior of food systems. However, the hydrolysate powders in general are hygroscopic in nature making them unstable. The powder properties may vary under different processing and drying conditions which can further influence the powder stability. Thus, the study explores the effect of hydrodynamic cavitation (HC) pretreatment and drying conditions on stability and microstructure of egg white protein hydrolysate (EWPH) powder for wider food application. The HC-pretreated EWPH powder obtained from two different drying methods, namely, freeze and vacuum drying, was assessed for their stability at elevated temperatures of 25, 35, 40, 45, and 55 °C for moisture sorption isotherm analysis. The sorption isotherms of EWPH were found to have a typical type III sigmoid curve, representing a hygroscopic material that fitted the GAB model well. The HC-treated EWPHs did not have much variation with temperature showing better stability. The density of vacuum-dried samples was higher by ~ 50% compared to freeze-dried samples. From DSC, it was confirmed that HC aided in improving the stability of freeze-dried EWPH powder where the highest denaturation temperature was found as 106.2 °C. Overall, a lower temperature of 25 °C and a relative humidity of 40% were found suitable for maintaining the stability of EWPH powder. Moreover, the study demonstrated that a pretreatment like HC had profound effect in enhancing the stability of protein hydrolysate powder, especially after freeze drying.
Graphical Abstract
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
Abbreviations
- A c, B c :
-
Caurie model constants
- A o, B o :
-
Oswin model constants
- A sm, B sm :
-
Smith model constants that represent the amount of water in the first and multilayer sorbed fraction
- ANOVA:
-
Analysis of variance
- a w :
-
Water activity
- BET:
-
Brunauer-Emmett-Teller
- C b :
-
BET constant related to the net heat of sorption
- C g :
-
Guggenheim constant
- DSC:
-
Differential scanning calorimetry
- DVS:
-
Dynamic vapor sorption
- EWP:
-
Egg white protein
- EWPH:
-
Egg white protein hydrolysate
- FD:
-
Freeze drying
- FTIR:
-
Fourier transform infrared spectroscopy
- GAB:
-
Guggenheim-Anderson-de Boer
- HC:
-
Hydrodynamic cavitation
- K 1, K 2, A P, B P :
-
Peleg model constants
- K m :
-
Molecule multilayer factor
- M bo :
-
BET monolayer moisture content, db
- M e :
-
Equilibrium moisture content, db
- M o :
-
GAB monolayer moisture content
- M o´, C o, and K o :
-
Dimensionless pre-exponential factors corresponding to GAB constants
- R :
-
Universal gas constant (8.314 J mol−1 K−1)
- RH:
-
Relative humidity
- RMSE:
-
Root mean square error
- R-square/R 2 :
-
Coefficient of determination
- T :
-
Temperature (K)
- T d :
-
Peak temperature
- T g :
-
Glass transition temperature
- VD:
-
Vacuum drying
- XRD:
-
X-ray diffraction
- α-helix:
-
Alpha helix
- β-sheet:
-
Beta sheet
- ΔH :
-
Enthalpy
- ΔH c :
-
Difference between molar enthalpy of monolayer and multilayer moisture (kJ mol−1)
- ΔH k :
-
Difference between molar enthalpy of multilayer and bulk liquid water (kJ mol−1)
- ΔH m :
-
Temperature dependence of Mo (kJ mol−1)
References
Aguilera, J. M., Levi, G., & Karel, M. (1993). Effect of water content on the glass transition and caking of fish protein hydrolyzates. Biotechnology Progress, 9(6), 651–654.
Arslan, N., & Togˇrul, H. (2005). Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach. Journal of Food Engineering, 69(2), 133–145. https://doi.org/10.1016/j.jfoodeng.2004.08.004
Asaithambi, N., Singha, P., & Singh, S. K. (2022). Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. Innovative Food Science & Emerging Technologies, 82, 103166. https://doi.org/10.1016/j.ifset.2022.103166
Asaithambi, N., Singha, P., & Singh, S. K. (2023a). Influence of hydrodynamic cavitation on functional, nutritional, and structural characteristics of egg-white protein hydrolysates. Food Hydrocolloids for Health. https://doi.org/10.1016/j.fhfh.2023.100153
Asaithambi, N., Singha, P., Dwivedi, M., & Singh, S. K. (2019). Hydrodynamic cavitation and its application in food and beverage industry: A review. Journal of Food Process Engineering, 42(5). https://doi.org/10.1111/jfpe.13144
Asaithambi, N., Singha, P., & Singh, S. K. (2022a). Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. Innovative Food Science & Emerging Technologies, 82. https://doi.org/10.1016/j.ifset.2022.103166
Asaithambi, N., Singha, P., & Singh, S. K. (2022c). Recent application of protein hydrolysates in food texture modification. Critical Reviews in Food Science and Nutrition, 1–32. https://doi.org/10.1080/10408398.2022.2081665
Asaithambi, N., Singha, P., & Singh, S. K. (2023b). Influence of hydrodynamic cavitation on functional, nutritional, and structural characteristics of egg-white protein hydrolysates. Food Hydrocolloids for Health, 4. https://doi.org/10.1016/j.fhfh.2023.100153
Barbhuiya, R. I., Singha, P., & Singh, S. K. (2021). A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Research International, 149. https://doi.org/10.1016/j.foodres.2021.110647
Basu, S., Shivhare, U. S., & Mujumdar, A. S. (2006). Models for sorption isotherms for foods: A review. Drying Technology, 24(8), 917–930. https://doi.org/10.1080/07373930600775979
Bendit, E. G. (2016). A quantitative X-ray diffraction study of the alpha-beta transformation in wool keratin. Textile Research Journal, 30(8), 547–555. https://doi.org/10.1177/004051756003000801
Blahovec, J., & Yanniotis, S. (2007). GAB generalized equation for sorption phenomena. Food and Bioprocess Technology, 1(1), 82–90. https://doi.org/10.1007/s11947-007-0012-3
Bronlund, J., & Paterson, T. (2004). Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. International Dairy Journal, 14(3), 247–254. https://doi.org/10.1016/s0958-6946(03)00176-6
Brunauer, S., Emett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Society, 62, 1723–1732.
Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (2002). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62(7), 1723–1732. https://doi.org/10.1021/ja01864a025
Caboni, M., Boselli, E., Messia, M., Velazco, V., Fratianni, A., Panfili, G., & Marconi, E. (2005). Effect of processing and storage on the chemical quality markers of spray-dried whole egg. Food Chemistry, 92(2), 293–303. https://doi.org/10.1016/j.foodchem.2004.07.025
Camaño Echavarria, J. A., Rivera Torres, A. M., & Zapata Montoya, J. E. (2021). Sorption isotherms and thermodynamic properties of the dry silage of red tilapia viscera (Oreochromis spp.) obtained in a direct solar dryer. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06798
de Castro, M. D. L., & García, J. L. L. (2002). Analytical freeze-drying. In Acceleration and Automation of solid sample treatment (pp. 11–41). https://doi.org/10.1016/s0167-9244(02)80004-x
Červenka, L., Hloušková, L., & Žabčíková, S. (2015). Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis). Food Bioscience, 12, 122–127. https://doi.org/10.1016/j.fbio.2015.10.001
Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry, 18(5), 951–957. https://doi.org/10.1016/j.ultsonch.2010.12.016
Charoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., & McClements, D. J. (2015). The physical characterization and sorption isotherm of rice bran oil powders stabilized by food-grade biopolymers. Drying Technology, 33(4), 479–492. https://doi.org/10.1080/07373937.2014.962142
Chen, C., Chi, Y.-J., & Xu, W. (2011). Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food and Bioprocess Technology, 5(6), 2342–2352. https://doi.org/10.1007/s11947-011-0606-7
Dash, D. R., Singh, S. K., & Singha, P. (2024a). Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review. Critical Reviews in Food Science and Nutrition, 64(10), 3151–3166. https://doi.org/10.1080/10408398.2022.2130161
Dash, D. R., Singh, S. K., & Singha, P. (2024b). Viscoelastic behavior, gelation properties and structural characterization of Deccan hemp seed (Hibiscus cannabinus) protein: Influence of protein and ionic concentrations, pH, and temperature. International Journal of Biological Macromolecules, 263(1). https://doi.org/10.1016/j.ijbiomac.2024.130120
Drenth, J. (2007). Crystallizing a protein. In Principles of protein X-ray crystallography (pp. 1–20). https://doi.org/10.1007/0-387-33746-6_1
Edrisi Sormoli, M., & Langrish, T. A. G. (2015). Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT - Food Science and Technology, 62(1), 875–882. https://doi.org/10.1016/j.lwt.2014.09.064
Erbaş, M., Aykın, E., Arslan, S., & Durak, A. N. (2016). Adsorption behaviour of bulgur. Food Chemistry, 195, 87–90. https://doi.org/10.1016/j.foodchem.2015.06.050
Ginzberg, A., Korin, E., & Arad, S. (2008). Effect of drying on the biological activities of a red microalgal polysaccharide. Biotechnology and Bioengineering, 99(2), 411–420. https://doi.org/10.1002/bit.21573
Gong, Q., Liu, C., Tian, Y., Zheng, Y., Wei, L., Cheng, T., Wang, Z., Guo, Z., & Zhou, L. (2023). Effect of cavitation jet technology on instant solubility characteristics of soymilk flour: Based on the change of protein conformation in soymilk. Ultrasonics sonochemistry, 96. https://doi.org/10.1016/j.ultsonch.2023.106421
Goula, A. M., Karapantsios, T. D., Achilias, D. S., & Adamopoulos, K. G. (2008). Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 85(1), 73–83. https://doi.org/10.1016/j.jfoodeng.2007.07.015
Güzey, D., Özdemir, M., Seyhan, F. G., Doğan, H., & Devres, Y. O. (2007). Adsorption isotherms of raw and roasted hazelnuts. Drying Technology, 19(3–4), 691–699. https://doi.org/10.1081/drt-100103945
Hogan, S. A., & O’Callaghan, D. J. (2013). Moisture sorption and stickiness behaviour of hydrolysed whey protein/lactose powders. Dairy Science & Technology, 93(4–5), 505–521. https://doi.org/10.1007/s13594-013-0129-2
Hossain, S. A., Pal, P. K., Sarkar, P. K., & Patil, G. R. (2002). Moisture sorption characteristics of dudh churpi, a traditional milk product in India. Nahrung/Food, 46(3). https://doi.org/10.1002/1521-3803(20020501)46:3<136::Aid-food136>3.0.Co;2-t
Işıklı, N. D., & Yılmaz, İ. (2011). Some physical properties of sun-dried Berberis fruit (Berberis crataegina). Journal of Food Science and Technology, 51(1), 104–110. https://doi.org/10.1007/s13197-011-0469-y
Jaworska, G., Pogoń, K., Bernaś, E., & Skrzypczak, A. (2014). Effect of different drying methods and 24-month storage on water activity, rehydration capacity, and antioxidants in Boletus edulis mushrooms. Drying Technology, 32(3), 291–300. https://doi.org/10.1080/07373937.2013.824895
Jaya, S. (2009). Microstructure analysis of dried yogurt: Effect of different drying methods. International Journal of Food Properties, 12(3), 469–481. https://doi.org/10.1080/10942910701772071
Ji, Y., Yang, X., Ji, Z., Zhu, L., Ma, N., Chen, D., Jia, X., Tang, J., & Cao, Y. (2020). DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega, 5(15), 8572–8578. https://doi.org/10.1021/acsomega.9b04421
Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., & Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67–76. https://doi.org/10.1016/j.fbp.2019.08.018
Leonardo Betiol, L. F., Evangelista, R. R., Ribeiro Sanches, M. A., Basso, R. C., Gullón, B., Lorenzo, J. M., Carla da Silva Barretto, A., & Romero, J. T. (2020a). Influence of temperature and chemical composition on water sorption isotherms for dry-cured ham. Lwt, 123. https://doi.org/10.1016/j.lwt.2020.109112
Leonardo Betiol, L. F., Evangelista, R. R., Ribeiro Sanches, M. A., Basso, R. C., Gullón, B., Lorenzo, J. M., Carla da Silva Barretto, A., & Romero, J. T. (2020b). Influence of temperature and chemical composition on water sorption isotherms for dry-cured ham. Lwt, 123. https://doi.org/10.1016/j.lwt.2020.109112
Leuk, P., Schneeberger, M., Hirn, U., & Bauer, W. (2015). Heat of sorption: A comparison between isotherm models and calorimeter measurements of wood pulp. Drying Technology, 34(5), 563–573. https://doi.org/10.1080/07373937.2015.1062391
Liu, Y., Bhandari, B., & Zhou, W. (2006). Glass transition and enthalpy relaxation of amorphous food saccharides: A review. Journal of Agricultural and Food Chemistry, 54(16), 5701–5717. https://doi.org/10.1021/jf060188r
Martínez-Las Heras, R., Heredia, A., Castelló, M. L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7, 88–94. https://doi.org/10.1016/j.fbio.2014.06.002
Mirhosseini, H., & Amid, B. T. (2013). Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein Gum from durian fruit seed. Chemistry Central Journal, 7(1). https://doi.org/10.1186/1752-153x-7-1
Mounsey, J. S., Hogan, S. A., Murray, B. A., & O’Callaghan, D. J. (2012). Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders. Journal of Dairy Science, 95(5), 2270–2281. https://doi.org/10.3168/jds.2011-4674
Mujumdar, A. S., & Huang, L. X. (2007). Global R&D needs in drying. Drying Technology, 25(4), 647–658. https://doi.org/10.1080/07373930701285886
Muzaffar, K., & Kumar, P. (2016). Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 322–327. https://doi.org/10.1016/j.powtec.2015.12.046
Nowak, D., & Jakubczyk, E. (2020). The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods, 9(10) 10.3390/foods9101488
Oswin, C. R. (1946). The kinetics of package life. III. The isotherm. Journal of the Society of Chemical Industry, 65(12), 419–421.
Palipane, K. B., & Driscoll, R. H. (1993). Moisture sorption characteristics of in-shell macadamia nuts. Journal of Food Engineering, 18(1), 63–76. https://doi.org/10.1016/0260-8774(93)90075-u
Peleg, M. (1993). Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms1. Journal of Food Process Engineering, 16, 21–37. https://doi.org/10.1111/j.1745-4530.1993.tb00160.x
Polatoğlu, B., Beşe, A. V., Kaya, M., & Aktaş, N. (2011). Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food and Bioproducts Processing, 89(4), 449–456. https://doi.org/10.1016/j.fbp.2010.06.003
Preethi, R., Shweta, D., Moses, J. A., & Anandharamakrishnan, C. (2020). Conductive hydro drying as an alternative method for egg white powder production. Drying Technology, 39(3), 324–336. https://doi.org/10.1080/07373937.2020.1788073
Puri, R., & Khamrui, K. (2016). Effect of temperature on sorption isotherms and thermodynamics of intermediate moisture category Indian milk product cham-cham. Journal of Food Processing and Preservation, 40(5), 999–1009. https://doi.org/10.1111/jfpp.12680
Purohit, S. R., & Rao, P. S. (2016). Modelling and analysis of moisture sorption isotherm of raw and pregelatinized rice flour and its crystalline status prediction. Food Analytical Methods, 10(6), 1914–1921. https://doi.org/10.1007/s12161-016-0745-6
Quirijns, E. J., van Boxtel, A. J. B., van Loon, W. K. P., & van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85(11), 1805–1814. https://doi.org/10.1002/jsfa.2140
Rajabnezhad, S., Ghafourian, T., Rajabi-Siahboomi, A., Missaghi, S., Naderi, M., Salvage, J. P., & Nokhodchi, A. (2020). Investigation of water vapour sorption mechanism of starch-based pharmaceutical excipients. Carbohydrate Polymers, 238. https://doi.org/10.1016/j.carbpol.2020.116208
Ravindran, N., Singh, S. K., & Singha, P. (2024). A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Research International. https://doi.org/10.1016/j.foodres.2024.114575
Rodríguez-Bernal, J. M., Flores-Andrade, E., Lizarazo-Morales, C., Bonilla, E., Pascual-Pineda, L. A., Gutierréz-López, G., & Quintanilla-Carvajal, M. X. (2015). Moisture adsorption isotherms of the borojó fruit (Borojoa patinoi. Cuatrecasas) and gum arabic powders. Food and Bioproducts Processing, 94, 187–198. https://doi.org/10.1016/j.fbp.2015.03.004
Ryan, G., O'Regan, J., & FitzGerald, R. J. (2022). Rehydration and water sorption behaviour of bovine milk protein isolate and its associated enzymatic hydrolysates. International Dairy Journal, 128. https://doi.org/10.1016/j.idairyj.2022.105323
Sablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266–271. https://doi.org/10.1016/j.jfoodeng.2005.09.025
Shirkole, S. S., & Sutar, P. P. (2017). Modeling sorption phenomena and moisture migration rates in paprika (Capsicum annuum L.) using physicochemical characteristics. Journal of Food Science and Technology, 55(2), 678–688. https://doi.org/10.1007/s13197-017-2977-x
Shirkole, S. S., Mujumdar, A. S., & Sutar, P. P. (2019). Studies on thermal stability of high-power short time microwave dried paprika (Capsicum annuum L.) considering the interaction of water molecules with sorption sites. Drying Technology, 39(1), 52–65. https://doi.org/10.1080/07373937.2019.1693399
Shrestha, A. K., Howes, T., Adhikari, B. P., & Bhandari, B. R. (2007). Water sorption and glass transition properties of spray dried lactose hydrolysed skim milk powder. LWT - Food Science and Technology, 40(9), 1593–1600. https://doi.org/10.1016/j.lwt.2006.11.003
Slade, L., & Levine, H. (1993). The glassy state in foods. The glassy state phenomenon in food molecules (p. 35). Nottingham University Press Loughborough.
Smith, S. E. (1947). Sorptions of wheat vapour by high polymers. Journal of the American Chemical Society, 69, 646–651.
Tan, L., Hong, P., Yang, P., Zhou, C., Xiao, D., & Zhong, T. (2019). Correlation between the water solubility and secondary structure of tilapia-soybean protein co-precipitates. Molecules, 24(23). https://doi.org/10.3390/molecules24234337
Van den Berg, C. (1985). Development of BET-like models for sorption of water on foods, theory and relevance. In Properties of water in foods: In relation to quality and stability (pp. 119–131). Springer Netherlands.
Wang, C., Ma, C., Mu, C., & Lin, W. (2017). Tailor-made zwitterionic polyurethane coatings: Microstructure, mechanical property and their antimicrobial performance. RSC Advances, 7(44), 27522–27529. https://doi.org/10.1039/c7ra04379a
Wang, J., Wang, G., Chen, N., An, F., Zhang, R., Zhang, Y., Rahman, M. U., & Zhang, Y. (2021a). Characterization of structural, functional and antioxidant properties and amino acid composition of pepsin-derived glutelin-1 hydrolysate from walnut processing by-products. RSC Advances, 11(31), 19158–19168. https://doi.org/10.1039/d1ra00657f
Wang, Y.-Y., Wang, C.-Y., Wang, S.-T., Li, Y.-Q., Mo, H.-Z., & He, J.-X. (2021). Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases. Food Chemistry, 345. https://doi.org/10.1016/j.foodchem.2020.128765
Wang, Y., Liu, J., Zhang, Z., Meng, X., Yang, T., Shi, W., He, R., & Ma, H. (2023). Insights into ultrasonication treatment on the characteristics of cereal proteins: functionality, conformational and physicochemical characteristics. Foods, 12(5). 10.3390/foods12050971
Xiong, J., Li, Q., Shi, Z., & Ye, J. (2017). Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Research International, 100, 858–863. https://doi.org/10.1016/j.foodres.2017.07.061
Yan, Z., Li, Q., & Zhang, P. (2017). Soy protein isolate and glycerol hydrogen bonding using two-dimensional correlation (2D-COS) attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Applied Spectroscopy, 71(11), 2437–2445. https://doi.org/10.1177/0003702817710249
Zapata M, J. E., Quintero C, O. A., & Porras B, L. D. (2014). Sorption isotherms for oat flakes (Avena sativa L.). Agronomía Colombiana, 32(1), 52–58. https://doi.org/10.15446/agron.colomb.v32n1.40652
Zhang, X., & Pan, Z. (2019). Microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt. Polymers, 11(10). https://doi.org/10.3390/polym11101622
Acknowledgements
The authors would like to thank National Institute of Technology, Rourkela, Odisha, for providing laboratory facilities (Central Research Facility) for smooth conduct of the research and ICT-IOC, Bhubaneshwar for dynamic vapor sorption analysis during this investigation.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Contributions
Niveditha Asaithambi: Data curation, Formal analysis, Investigation, Methodology, Writing- original draft. Poonam Singha: Conceptualization, Methodology, Visualization, Validation, Writing- reviewing and editing. Sushil Kumar Singh: Conceptualization, Formal analysis, Resources, Supervision, Project administration, Writing- reviewing and editing. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Asaithambi, N., Singha, P. & Singh, S.K. Effect of Hydrodynamic Cavitation and Drying Technique on Moisture Sorption Isotherm and Structural Properties of Egg White Protein Hydrolysate Powder. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03570-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11947-024-03570-2