Skip to main content
Log in

The Effect of Pulsed Electric Fields (PEF) on Nanostructure and Monosaccharides Composition of Pectin Fractions Extracted from Green and Red Tomatoes

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

PEF technology is a non-thermal food process gaining popularity for treating fruits and vegetables. However, there has been little investigation into the impact of PEF on the biomolecular components of plant tissues. This study assesses the influence of PEF at low (1.5 kJ/kg) and medium (151 kJ/kg) intensities on the physicochemical parameters of pectin fractions isolated from green and red tomatoes. Monopolar exponential decay pulses of 1.0 and 10.0 kV/cm were delivered to alcohol-insoluble residue (AIR) recovered from mature green and ripe red tomatoes. Topography and recognition imaging were performed using atomic force microscopy (AFM) on three pectin fractions: water-soluble pectin (WSP), chelator-soluble pectin (CSP), and diluted alkali-soluble pectin (DASP). Image analysis has been used to characterize the geometrical properties of pectin. PEF treatments generated considerable structural alterations in all pectin fractions. The effect varied depending on the stage of tomato ripening and the energy input applied. The average length of WSP fibres in red tomatoes decreased dramatically (up to 50% shorter) as the intensity of the electric field increased. Green tomatoes showed the opposite effect, with the length of the WSP fibres increasing as the applied electric field increased. The monosaccharide composition revealed that PEF decreased pectin linearity independent of the fruit ripening stage. The data obtained on PEF-pectin interactions might assist in building tailored food processes that rely on pectin’s functional qualities and a better understanding of the effect of the ripening stage on PEF efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and raw data sets generated during the current study are available from the corresponding author on reasonable request.

References

  • Andreou, V., Dimopoulos, G., Dermesonlouoglou, E., & Taoukis, P. (2020). Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. Journal of Food Engineering, 270, 109778.

    Article  CAS  Google Scholar 

  • Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33(2), 103–119.

    Article  CAS  PubMed  Google Scholar 

  • Christiaens, S., Van Buggenhout, S., Houben, K., Jamsazzadeh Kermani, Z., Moelants, K. R., Ngouémazong, E. D., Van Loey, A., & Hendrickx, M. E. (2016). Process–structure–function relations of pectin in food. Critical Reviews in Food Science and Nutrition, 56(6), 1021–1042.

    Article  CAS  PubMed  Google Scholar 

  • Chylińska, M., Szymańska-Chargot, M., Deryło, K., Tchórzewska, D., & Zdunek, A. (2017). Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit. Plant Physiology and Biochemistry, 119, 328–337.

    Article  PubMed  Google Scholar 

  • Cybulska, J., Halaj, M., Cepák, V., Lukavský, J., & Capek, P. (2016). Nanostructure Features of Microalgae Biopolymer. Starch-Stärke, 68(7–8), 629–636.

    CAS  Google Scholar 

  • Cybulska, J., Zdunek, A., & Kozioł, A. (2015). The self-assembled network and physiological degradation of pectins in carrot cell walls. Food Hydrocolloids, 43, 41–50.

    Article  CAS  Google Scholar 

  • Dadan, M., Nowacka, M., Czyzewski, J., & Witrowa-Rajchert, D. (2020). Modification of food structure and improvement of freezing processes by pulsed electric field treatment. In Pulsed electric fields to obtain healthier and sustainable food for tomorrow (pp. 203–226). Elsevier.

  • Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2, 109–130.

    Article  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • Fauster, T., Giancaterino, M., Pittia, P., & Jaeger, H. (2020). Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. LWT, 121, 108937.

    Article  CAS  Google Scholar 

  • Giancaterino, M., Fauster, T., Krottenthaler, A., & Jäger, H. (2022). Effect of pulsed electric field pretreatment on the debittering process of cherry kernels. Innovative Food Science & Emerging Technologies, 103234.

  • Giancaterino, M., & Jaeger, H. (2023). Impact of pulsed electric fields (PEF) treatment on the peeling ability of tomatoes and kiwi fruits. Frontiers in Food Science and Technology, 3, 12.

    Article  Google Scholar 

  • Giancaterino, M., Werl, C., & Jaeger, H. (2023). Evaluation of the quality and stability of freeze-dried fruits and vegetables pre-treated by pulsed electric fields (PEF). LWT, 115651.

  • Gwanpua, S. G., Van Buggenhout, S., Verlinden, B. E., Christiaens, S., Shpigelman, A., Vicent, V., Kermani, Z. J., Nicolai, B. M., Hendrickx, M., & Geeraerd, A. (2014). Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples. Food Chemistry, 158, 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, H., Denzi, A., Liberti, M., André, F. M., & Mir, L. M. (2017). Electropermeabilization of inner and outer cell membranes with microsecond pulsed electric fields: Quantitative study with calcium ions. Scientific Reports, 7(1), 1–14.

    Article  Google Scholar 

  • Houben, K., Jolie, R. P., Fraeye, I., Van Loey, A. M., & Hendrickx, M. E. (2011). Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydrate Research, 346(9), 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  • Hyodo, H., Terao, A., Furukawa, J., Sakamoto, N., Yurimoto, H., Satoh, S., & Iwai, H. (2013). Tissue specific localization of pectin–Ca2+ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum). PLoS ONE, 8(11), e78949.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis, M., Briggs, S., & Knox, J. (2003). Intercellular adhesion and cell separation in plants. Plant, Cell & Environment, 26(7), 977–989.

    Article  Google Scholar 

  • Johnson, K. L., Gidley, M. J., Bacic, A., & Doblin, M. S. (2018). Cell wall biomechanics: A tractable challenge in manipulating plant cell walls’ fit for purpose’! Current Opinion in Biotechnology, 49, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203–235.

    Article  CAS  PubMed  Google Scholar 

  • Koch, Y., Witt, J., Lammerskitten, A., Siemer, C., & Toepfl, S. (2022). The influence of Pulsed Electric Fields (PEF) on the peeling ability of different fruits and vegetables. Journal of Food Engineering, 110938.

  • Kyomugasho, C., Willemsen, K. L., Christiaens, S., Van Loey, A. M., & Hendrickx, M. E. (2015). Pectin-interactions and in vitro bioaccessibility of calcium and iron in particulated tomato-based suspensions. Food Hydrocolloids, 49, 164–175.

    Article  CAS  Google Scholar 

  • Lal, A. N., Prince, M., Kothakota, A., Pandiselvam, R., Thirumdas, R., Mahanti, N. K., & Sreeja, R. (2021). Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. Innovative Food Science & Emerging Technologies, 74, 102844.

    Article  CAS  Google Scholar 

  • Liu, Y., Yan, S., Li, B., & Li, J. (2023a). Analysis of pectin-cellulose interaction in cell wall of lotus rhizome with assistance of ball-milling and galactosidase. International Journal of Biological Macromolecules, 246, 125615.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Zhou, W., Zhong, Y., Xie, X., Liu, H., Huang, H., Wang, Q., & Xiao, G. (2023b). Involvement of branched RG-I pectin with hemicellulose in cell–cell adhesion of tomato during fruit softening. Food Chemistry, 413, 135574.

    Article  CAS  PubMed  Google Scholar 

  • Lv, Y., Yang, X., Zhao, Y., Ruan, Y., Yang, Y., & Wang, Z. (2009). Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chemistry, 112(3), 742–746.

    Article  CAS  Google Scholar 

  • Ma, S., Yu, S. J., Zhang, Z. h., B., & Wang, Z. H. (2012). Physicochemical properties of sugar beet pulp pectin by pulsed electric field treatment. International Journal of Food Science & Technology, 47(12), 2538–2544.

    Article  CAS  Google Scholar 

  • Mignani, I., Greve, L. C., Ben-Arie, R., Stotz, H. U., Li, C., Shackel, K. A., & Labavitch, J. M. (1995). The effects of GA3 and divalent cations on aspects of pectin metabolism and tissue softening in ripening tomato pericarp. Physiologia Plantarum, 93(1), 108–115.

    Article  CAS  Google Scholar 

  • Moens, L. G., De Laet, E., Van Wambeke, J., Van Loey, A. M., & Hendrickx, M. E. (2020). Pulsed electric field and mild thermal processing affect the cooking behaviour of carrot tissues (Daucus carota) and the degree of methylesterification of carrot pectin. Innovative Food Science & Emerging Technologies, 66, 102483.

    Article  CAS  Google Scholar 

  • Mohr, W. (1990). The influence of fruit anatomy on ease of peeling of tomatoes for canning. International Journal of Food Science & Technology, 25(4), 449–457.

    Article  Google Scholar 

  • Morra, M., Cassinelli, C., Cascardo, G., Nagel, M.-D., Della Volpe, C., Siboni, S., Maniglio, D., Brugnara, M., Ceccone, G., & Schols, H. A. (2004). Effects on interfacial properties and cell adhesion of surface modification by pectic hairy regions. Biomacromolecules, 5(6), 2094–2104.

    Article  CAS  PubMed  Google Scholar 

  • Naliyadhara, N., Kumar, A., Girisa, S., Daimary, U. D., Hegde, M., & Kunnumakkara, A. B. (2022). Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science & Technology.

  • Paniagua, C., Posé, S., Morris, V. J., Kirby, A. R., Quesada, M. A., & Mercado, J. A. (2014). Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 114(6), 1375–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posé, S., Paniagua, C., Matas, A. J., Gunning, A. P., Morris, V. J., Quesada, M. A., & Mercado, J. A. (2019). A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science & Technology, 87, 47–58.

    Article  Google Scholar 

  • Punthi, F., Yudhistira, B., Gavahian, M., Chang, C. K., Cheng, K. C., Hou, C. Y., & Hsieh, C. W. (2022). Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5109–5130.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, K., Paul, V., & Pandey, R. (2021). Dynamics of mineral nutrients in tomato (Solanum lycopersicum L.) fruits during ripening: part II—off the plant. Plant Physiology Reports, 26, 284–300.

    Article  CAS  Google Scholar 

  • Redgwell, R. J., Melton, L. D., & Brasch, D. J. (1992). Cell wall dissolution in ripening kiwifruit (Actinidia deliciosa) solubilization of the pectic polymers. Plant Physiology, 98(1), 71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roohanitaziani, R., Lammers, M., Molthoff, J., Tikunov, Y., Meijer-Dekens, F., Visser, R. G., van Arkel, J., Finkers, R., de Maagd, R. A., & Bovy, A. G. (2022). Phenotyping of a diverse tomato collection for postharvest shelf-life. Postharvest Biology and Technology, 188, 111908.

    Article  CAS  Google Scholar 

  • Sakurai, N., & Nevins, D. J. (1993). Changes in physical properties and cell wall polysaccharides of tomato (Lycoperskon esculentum) pericarp tissues. Physiologia Plantarum, 89(4), 681–686.

    Article  CAS  Google Scholar 

  • Sawamura, M., Knegt, E., & Bruinsma, J. (1978). Levels of endogenous ethylene, carbon dioxide, and soluble pectin, and activities of pectin methylesterase and polygalacturonase in ripening tomato fruits. Plant and Cell Physiology, 19(6), 1061–1069.

    Article  CAS  Google Scholar 

  • Shorstkii, I., Sosnin, M., Smetana, S., Toepfl, S., Parniakov, O., & Wiktor, A. (2022). Correlation of the cell disintegration index with Luikov’s heat and mass transfer parameters for drying of pulsed electric field (PEF) pretreated plant materials. Journal of Food Engineering, 316, 110822.

    Article  Google Scholar 

  • Sila, D., Van Buggenhout, S., Duvetter, T., Fraeye, I., De Roeck, A., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruits and vegetables: Part II—Structure–function relationships. Comprehensive Reviews in Food Science and Food Safety, 8(2), 86–104.

    Article  CAS  Google Scholar 

  • USDA. (1991). United States standards for grades of fresh tomatoes. In: United States Department of Agriculture. Agricultural Marketing Service.

  • Van Audenhove, J., Bernaerts, T., De Smet, V., Delbaere, S., Van Loey, A. M., & Hendrickx, M. E. (2021). The structure and composition of extracted pectin and residual cell wall material from processing tomato: The role of a stepwise approach versus high-pressure homogenization-facilitated acid extraction. Foods, 10(5), 1064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, D., Yeats, T. H., Uluisik, S., Rose, J. K., & Seymour, G. B. (2018). Fruit softening: Revisiting the role of pectin. Trends in Plant Science, 23(4), 302–310.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Wang, J., Mujumdar, A., Jin, X., Liu, Z.-L., Zhang, Y., & Xiao, H.-W. (2021). Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids, 118, 106808.

    Article  CAS  Google Scholar 

  • Xin, Y., Chen, F., Yang, H., Zhang, P., Deng, Y., & Yang, B. (2010). Morphology, profile and role of chelate-soluble pectin on tomato properties during ripening. Food Chemistry, 121(2), 372–380.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhao, S., Lai, S., Chen, F., & Yang, H. (2018). Combined effects of ultrasound and calcium on the chelate-soluble pectin and quality of strawberries during storage. Carbohydrate Polymers, 200, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • Zielinska, S., Cybulska, J., Pieczywek, P., Zdunek, A., Kurzyna-Szklarek, M., Liu, Z.-L., Staniszewska, I., Pan, Z., Xiao, H.-W., & Zielinska, M. (2022). The effect of high humidity hot air impingement blanching on the changes in molecular and rheological characteristics of pectin fractions extracted from okra pods. Food Hydrocolloids, 123, 107199.

    Article  CAS  Google Scholar 

  • Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., & Thibault, J. F. J. (2005). Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology, 139(1), 397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Part of the equipment used in this study was provided by the EQ-BOKU VIBT GmbH and the BOKU Core Facility Food & Bio Processing.

Funding

This work was created within a research project of the Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI). The COMET-K1 competence centre FFoQSI is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET—Competence Centers for Excellent Technologies. The programme COMET is handled by the Austrian Research Promotion Agency FFG.

Author information

Authors and Affiliations

Authors

Contributions

Marianna Giancaterino, data curation, formal analysis, investigation, validation, writing—original draft. Justyna Cybulska, methodology, formal analysis and writing—review and editing. Artur Zdunek, project management, writing—review and editing. Henry Jaeger, project management, and writing—review.

Corresponding author

Correspondence to Marianna Giancaterino.

Ethics declarations

Compliance with Ethics Requirements

The research does not include any human subjects and animal experiments.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giancaterino, M., Cybulska, J., Zdunek, A. et al. The Effect of Pulsed Electric Fields (PEF) on Nanostructure and Monosaccharides Composition of Pectin Fractions Extracted from Green and Red Tomatoes. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03401-4

Keywords

Navigation