Skip to main content
Log in

The Construction of pH-Sensitive Starch-Based Carrier to Control the Delivery of Curcumin for Fish Preservation

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Controlled release of curcumin by a pH-sensitive carrier provides long-term preservation, which extends the shelf lives of fish. FTIR, XRD, 1H NMR, zeta potential, swelling ratio, and TG analyses indicated that a pH-sensitive starch-based carrier with a narrow pH-sensitivity range (pH 6–7) was fabricated from the carboxymethyl starch grafted with methacrylic acid and then cross-linked with β-cyclodextrin to achieve dual functionality. FTIR, XRD, and fluorescence spectroscopy revealed that the mechanism by which curcumin was encapsulated in the starch-based carriers involved hydrophobic interactions and intermolecular hydrogen bonding. The encapsulated curcumin showed improved stability, higher antioxidant activity, antibacterial activity, and biocompatibility. The pH, TVB-N, TVC, and drip loss tests confirmed that the use of the carrier-curcumin complex at a concentration of 10 mg/mL for the preservation of yellow catfish extended the shelf life for 2–4 days during cold storage and improved the storage quality of the resulting fillets. This work provides a dual functionality strategy for constructing a pH-sensitive starch-based carrier to deliver curcumin and offers a promising choice for fish preservation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules, 111, 498–504.

    Article  CAS  PubMed  Google Scholar 

  • Al-Dagal, M. M., & Bazaraa, W. A. (1999). Extension of shelf life of whole and peeled shrimp with organic acid salts and bifidobacteria. Journal of Food Protection, 62(1), 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Ali, A., Wei, S., Ali, A., Khan, I., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, Y., & Liu, S. (2022). Research progress on nutritional value, preservation and processing of fish–A review. Foods, 11(22), 3669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assaad, E., Wang, Y. J., Zhu, X. X., & Mateescu, M. A. (2011). Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydrate Polymers, 84(4), 1399–1407.

    Article  CAS  Google Scholar 

  • Bhoopathy, S., Inbakandan, D., Rajendaran, T., & Chandrasekaran, K. (2020). Curcumin loaded chitosan nanoparticles fortify shrimp feed pellets with enhanced antioxidant activity. Materials Science and Engineering C, 120(1), 111737.

    PubMed  Google Scholar 

  • Ding, H., Tan, P., Fu, S., Tian, X., Zhang, H., Ma, X., Gu, Z., & Luo, K. (2022). Preparation and application of pH-responsive drug delivery systems. Journal of Controlled Release, 348, 206–238.

    Article  CAS  PubMed  Google Scholar 

  • Gao, F., Li, D., Bi, C.-h, Z-h, M., & Adhikari, B. (2014). Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydrate Polymers, 103, 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Gokoglu, N. (2019). Novel natural food preservatives and applications in seafood preservation: A review. Journal of the Science of Food and Agriculture, 99(5), 2068–2077.

    Article  CAS  PubMed  Google Scholar 

  • Güler, M. A., Gök, M. K., Figen, A. K., & Özgümüş, S. (2015). Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. Applied Clay Science, 112–113, 44–52.

    Article  Google Scholar 

  • Haq, F., Yu, H., Wang, Y., Wang, L., Haroon, M., Khan, A., et al. (2020). Synthesis of carboxymethyl starch grafted poly (methacrylic acids) (CMS-g-PMAAs) and their application as an adsorbent for the removal of ammonia and phenol. Journal of Molecular Structure, 1207(1), 127752.

    Article  Google Scholar 

  • Hu, Y., Qiu, C., Mcclements, D. J., Qin, Y., Long, J., Jiao, A., Li, X., Wang, J., & Jin, Z. (2022). Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 376, 131869-.

    Article  CAS  Google Scholar 

  • Huong, L. M., Thu, H. P., Nguyen, T. B. T., Tran, T. H. H., Ha, T. M. T., Trang, M. T., Tran, T. N. H., Nghi, D. H., Phuc, N. X., & Duong, T. Q. (2011). Preparation and antitumor-promoting activity of curcumin encapsulated by 1,3-β-glucan isolated from Vietnam Medicinal Mushroom Hericium erinaceum. Chemistry Letters 40(8), 846–848.

    Article  CAS  Google Scholar 

  • Jog, R., & Burgess, D. J. (2017). Pharmaceutical amorphous nanoparticles. Journal of Pharmaceutical Sciences, 106(1), 39–65.

    Article  CAS  PubMed  Google Scholar 

  • Ju, J., Liao, L., Qiao, Y., Xiong, G., Li, D., Wang, C., Hu, J., Wang, L., Wu, W., & Ding, A. (2018). The effects of vacuum package combined with tea polyphenols (V+TP) treatment on quality enhancement of weever (Micropterus salmoides) stored at 0°C and 4°C. LWT, 91, 484–490.

    Article  CAS  Google Scholar 

  • Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural & Food Chemistry, 50(14), 3912–3918.

    Article  CAS  Google Scholar 

  • Lack, S., Dulong, V., Le Cerf, D., Picton, L., Argillier, J. F., & Muller, G. (2004). Hydrogels based on pullulan crosslinked with sodium trimetaphosphate (STMP): Rheological study. Polymer Bulletin, 52(6), 429–436.

    Article  CAS  Google Scholar 

  • Lan, W., Yang, X., Liu, J., & Xie, J. (2022). Effects of phenolic acid grafted chitosan on moisture state and protein properties of vacuum packaged sea bass (Lateolabrax japonicus) during refrigerated storage. LWT-Food Science and Technology, 159, 113208.

    Article  CAS  Google Scholar 

  • Li, J., Xin, M., Huo, Y., Cai, A., Yan, M., Wang, C., & Wei, G. (2020). Synthesis of β-cyclodextrin-PEG-G molecules to delay tumor growth and application of β-cyclodextrin-PEG-G aggregates as drug carrier. Carbohydrate Polymers, 229, 115478.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. M., Wu, Z. Z., Zhang, B., Pan, Y., & Meng, R. (2019). Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry, 293, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Liang, S. Y., Du, J., Hong, Y., Cheng, L., Gu, Z. B., Li, Z. F., & Li, C. M. (2023). Octenyl succinate anhydride debranched starch-based nanocarriers for curcumin with improved stability and antioxidant activity. Food Hydrocolloids, 135, 108118.

    Article  CAS  Google Scholar 

  • Liu, K., Huang, R.-L., Zha, X.-Q., Li, Q.-M., Pan, L.-H., & Luo, J.-P. (2020). Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydrate Polymers, 232, 115810.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. Y., & Fan, X. D. (2002). Synthesis and characterization of pH- and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer. Polymer, 43(18), 4997–5003.

    Article  CAS  Google Scholar 

  • Mahkam, M. (2010). Starch-based polymeric carriers for oral-insulin delivery. Journal of Biomedical Materials Research Part A, 92A(4), 1392–1397.

    Article  CAS  Google Scholar 

  • Meng, R., Wu, Z., Xie, Q.-T., Cheng, J.-S., & Zhang, B. (2021). Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chemistry, 340, 127893.

    Article  CAS  PubMed  Google Scholar 

  • Muhammad, K., Hussin, F., Man, Y. C., Ghazali, H. M., & Kennedy, J. F. (2000). Effect of pH on phosphorylation of sago starch. Carbohydrate Polymers, 42(1), 85–90.

    Article  CAS  Google Scholar 

  • O’Toole, M. G., Soucy, P. A., Chauhan, R., Raju, M. V. R., Patel, D. N., Nunn, B. M., Keynton, M. A., Ehringer, W. D., Nantz, M. H., Keynton, R. S., & Gobin, A. S. (2016). Release-modulated antioxidant activity of a composite curcumin-chitosan polymer. Biomacromolecules, 17(4), 1253–1260.

    Article  PubMed  Google Scholar 

  • Pascuta, M. S., & Vodnar, D. C. (2022). Nanocarriers for sustainable active packaging: An overview during and post COVID-19. Coatings, 12(1), 102.

    Article  CAS  Google Scholar 

  • Rodrigues, A., & Emeje, M. (2012). Recent applications of starch derivatives in nanodrug delivery. Carbohydrate Polymers, 87(2), 987–994.

    Article  CAS  Google Scholar 

  • Saboktakin, M. R., Maharramov, A., & Ramazanov, M. A. (2009). pH-sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties. Carbohydrate Polymers, 77(3), 634–638.

    Article  CAS  Google Scholar 

  • Shah, B. R., Li, Y., Jin, W., An, Y., He, L., Li, Z., Xu, W., & Li, B. (2016). Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocolloids, 52(JAN.), 369–377.

    Article  CAS  Google Scholar 

  • Shi, L., Yin, T., Xiong, G., Ding, A., Li, X., Wu, W., Qiao, Y., Liao, L., Wang, J., & Wang, L. (2020a). Microstructure and physicochemical properties: Effect of pre-chilling and storage time on the quality of Channel catfish during frozen storage. LWT-Food Science and Technology, 130, 109606.

    Article  CAS  Google Scholar 

  • Shi, Y. N., Ye, F., Lu, K. Y., Hui, Q. R., & Miao, M. (2020b). Characterizations and bioavailability of dendrimer-like glucan nanoparticulate system containing resveratrol. Journal of Agricultural and Food Chemistry, 68(23), 6420–6429.

    Article  CAS  PubMed  Google Scholar 

  • Shlar, I., Poverenov, E., Vinokur, Y., Horev, B., Droby, S., & Rodov, V.J.N.-M.L. (2015). High-throughput screening of nanoparticle-stabilizing ligands: Application to preparing antimicrobial curcumin nanoparticles by antisolvent precipitation. Nano-Micro Letters, 7, 68–79.

    Article  CAS  PubMed  Google Scholar 

  • Stojadinovic, M., Radosavljevic, J., Ognjenovic, J., Vesic, J., Prodic, I., Stanic-Vucinic, D., & Velickovic, T. C. (2013). Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chemistry, 136(3–4), 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B., Tian, Y., Chen, L., & Jin, Z. (2017). Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin. Food Hydrocolloids, 77(APR.), 911–920.

    Google Scholar 

  • Wang, L. F., Pan, S. Y., Hu, H., Miao, W. H., & Xu, X. Y. (2010). Synthesis and properties of carboxymethyl kudzu root starch. Carbohydrate Polymers, 80(1), 174–179.

    Article  CAS  Google Scholar 

  • Wang, Y. J., Pan, M. H., Cheng, A. L., Lin, L. I., & Lin, J. K. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 15(12), 1867–1876.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Song, G., Huang, R., Yan, Y., Li, Q., Guo, X., Shi, X., Tian, Y., Wang, J., & Wang, S. (2023). Fish gelatin films incorporated with cinnamaldehyde and its sulfobutyl ether-beta-cyclodextrin inclusion complex and their application in fish preservation. Food Chemistry, 418, 135871.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, C. M., & Fang, F. (2009). Ionic self-assembly and characterization of a polysaccharide-based polyelectrolyte complex of maleic starch half-ester acid with chitosan. Journal of Applied Polymer Science, 112(4), 2255–2260.

    Article  CAS  Google Scholar 

  • Xu, Z., Yang, D., Long, T., Yuan, L., Qiu, S., Li, D., Mu, C., & Ge, L. (2022). pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydrate Polymers, 277, 118827.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, A., Bozkurt, F., Cicek, P. K., Dertli, E., Durak, M. Z., & Yilmaz, M. T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science & Emerging Technologies, 37, 74–83.

    Article  CAS  Google Scholar 

  • Yu, H. H., Chin, Y.-W., & Paik, H.-D. (2021). Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods, 10(10), 2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Li, H., Li, X., Cheng, C., Jin, Z., Xu, X., & Tian, Y. (2015). Preparation, characterization, and in vitro release of carboxymethyl starch/beta-cyclodextrin microgel-ascorbic acid inclusion complexes. RSC Advances, 5(76), 61815–61820.

    Article  CAS  Google Scholar 

  • Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial mechanism of curcumin: A review. Chemistry & Biodiversity, 17(8), e2000171.

    Article  CAS  Google Scholar 

  • Zhou, X., Chang, Q., Li, J., Jiang, L., Xing, Y., & Jin, Z. (2021). Preparation of V-type porous starch by amylase hydrolysis of V-type granular starch in aqueous ethanol solution. International Journal of Biological Macromolecules, 183, 890–897.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2022YFD2100904), the China Agriculture Research System (CARS-46), the Postdoctoral Innovative Practice Position of Hubei Province, and 2020 Annual Key Project of Scientific and Technological R&D of Hubei Agricultural Scientific and Technological Innovation Center (2020-620-000-002-06).

Author information

Authors and Affiliations

Authors

Contributions

Xiaojia Guo: investigation, methodology, writing—original draft, writing—review and editing, funding acquisition. Shujin Liu: methodology. Lanyan Yang: methodology. Chaoguang Zhao: methodology. Liu Shi: investigation. Guangquan Xiong: investigation, funding acquisition. Lang Chen: methodology. Sheng Chen: methodology. Wenjin Wu: project administration, resources, supervision, funding acquisition. Lan Wang: conceptualization, supervision, project administration, writing—review and editing, funding acquisition.

Corresponding authors

Correspondence to Wenjin Wu or Lan Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2336 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Liu, S., Yang, L. et al. The Construction of pH-Sensitive Starch-Based Carrier to Control the Delivery of Curcumin for Fish Preservation. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03389-x

Keywords

Navigation