Skip to main content
Log in

Radio Frequency Modulates the Multi-scale Structure and Physicochemical Properties of Corn Starch: The Related Mechanism

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Hot air (HA) assisted radio frequency (RF) technology is an effective method to improve the drying quality of grains. This study was undertaken to investigate the effect of HA-RF heating on multi-scale structure and physicochemical properties of corn starch with different moisture content (MC) levels (0.30 and 0.35, dry basis) and temperatures (60 °C, 70 °C, and 80 °C). The result showed that HA-RF treatment destroyed the crystal structure and decreased the relative crystallinity from 32.61 to 18.47%, increased the amylose content (AC) from 8.13 to 24.35%, and promoted the pre-gelatinization of starch. At high MC, the short-range order structure decreased, the particle size, gelatinization temperature, and pasting viscosity increased with increasing temperature. Meanwhile, the HA-RF treated starch at low MC was prone to retrograde and formed the strong network structure. However, as the temperature continued to rise to 80 °C, the increase of starch–protein interaction inhibited the enhance of AC and particle size in treated samples at low MC. Moreover, this phenomenon reduced its gelatinization temperature and pasting viscosity. The above results indicated that temperature and MC together affected the structure and functionalities of corn starch. The study might help understand the mechanism of the effect of HA-RF treatment on the physicochemical properties of starch and improve of the processing quality of corn grains by adjusting the drying temperature according to the initial moisture content of the kernels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data is contained within the article and available on request from the corresponding author.

References

  • Ai, Z., Zhu, G., Zheng, Z., Xiao, H., Mowafy, S., & Liu, Y. (2023). Successive two-stage hot air-drying with humidity control combined radio frequency drying improving drying efficiency and nutritional quality of Amomi fructus. Food and Bioprocess Technology, 16(1), 149–166.

    Article  CAS  Google Scholar 

  • Altan, A. (2014). Effects of pretreatments and moisture content on microstructure and physical properties of microwave expanded hull-less barley. Food Research International, 56, 126–135.

    Article  Google Scholar 

  • Andrejko, D., Grochowicz, J., Goździewska, M., & Kobus, Z. (2011). Influence of infrared treatment on mechanical strength and structure of wheat grains. Food Bioprocess Technology, 4, 1367–1375.

    Article  Google Scholar 

  • AOAC. (2005). Official Methods of Analysis. Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Choi, J. M., Park, C. S., Baik, M. Y., Kim, H. S., Choi, Y. S., Choi, H. W., & Seo, D. H. (2018). Enzymatic extraction of starch from broken rice using freeze-thaw infusion with food-grade protease. Starch-Stärke, 70(1–2), 1700007.

    Article  Google Scholar 

  • da Rosa Zavareze, E., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317–328.

    Article  Google Scholar 

  • Dag, D., Farmanfarmaee, A., Kong, F., Jung, J., McGorrin, R. J., & Zhao, Y. (2023). Feasibility of simultaneous drying and blanching inshell hazelnuts (Corylus avellana L.) using hot air–assisted radio frequency (HARF) heating. Food and Bioprocess Technology, 16(2), 404–419.

    Article  CAS  Google Scholar 

  • Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416–422.

    Article  CAS  PubMed  Google Scholar 

  • Gayral, M., Bakan, B., Dalgalarrondo, M., Elmorjani, K., Delluc, C., Brunet, S., Linossier, L., Morel, M. H., & Marion, D. (2015). Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness. Journal of Agricultural and Food Chemistry, 63, 3551–3558.

    Article  CAS  PubMed  Google Scholar 

  • Gong, C., Liao, M., Zhang, H., Xu, Y., Miao, Y., & Jiao, S. (2020). Investigation of hot air–assisted radio frequency as a final–stage drying of pre-dried carrot cubes. Food and Bioprocess Technology, 13, 419–429.

    Article  CAS  Google Scholar 

  • Hassan, A. B., Pawelzik, E., & von Hoersten, D. (2021). Effect of microwave heating on the physiochemical characteristics, colour and pasting properties of corn (Zea mays L.) grain. LWT, 138, 110703. https://doi.org/10.1016/j.lwt.2020.110703

  • Huart, F., Malumba, P., Odjo, S., Al-Izzi, W., Bera, F., & Beckers, Y. (2018). In vitro and in vivo assessment of the effect of initial moisture content and drying temperature on the feeding value of maize grain. British Poultry Science, 59(4), 452–462.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S. Z., Iftikhar, F., Naseer, B., Altaf, U., Reshi, M., & Nidoni, U. K. (2021). Effect of radiofrequency induced accelerated ageing on physico-chemical, cooking, pasting and textural properties of rice. LWT, 139, 110595.

    Article  CAS  Google Scholar 

  • Jiao, S., Sun, W., Yang, T., Zou, Y., Zhu, X., & Zhao, Y. (2017). Investigation of the feasibility of radio frequency energy for controlling insects in milled rice. Food and Bioprocess Technology, 10, 781–788.

    Article  Google Scholar 

  • Juliano, B. O., Perez, C. M., Blakeney, A. B., Castillo, T., Kongseree, N., Laignelet, B., Lapis, E. T., Murty, V. V. S., Paule, C. M., & Webb, B. D. (1981). International cooperative testing on the amylose content of milled rice. Starch-Stärke, 33(5), 157–162.

    Article  CAS  Google Scholar 

  • Kaur, H., & Gill, B. S. (2019). Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. International Journal of Biological Macromolecules, 126, 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Kim, A. N., Rahman, M. S., Lee, K. Y., & Choi, S. G. (2021). Superheated steam pretreatment of rice flours: Gelatinization behavior and functional properties during thermal treatment. Food Bioscience, 41, 101013.

    Article  CAS  Google Scholar 

  • Kim, H. Y., Ye, S. J., & Baik, M. Y. (2023). Pressure moisture treatment (PMT) of starch, a new physical modification method. Food Hydrocolloids, 134, 108051.

    Article  CAS  Google Scholar 

  • Kljak, K., Duvnjak, M., & Grbeša, D. (2018). Contribution of zein content and starch characteristics to vitreousness of commercial maize hybrids. Journal of Cereal Science, 80, 57–62.

    Article  CAS  Google Scholar 

  • Liao, M., Damayanti, W., Zhao, Y., Xu, X., Zheng, Y., Wu, J., & Jiao, S. (2020). Hot air-assisted radio frequency stabilizing treatment effects on physicochemical properties, enzyme activities and nutritional quality of wheat germ. Food and Bioprocess Technology, 13, 901–910.

    Article  CAS  Google Scholar 

  • Lin, B., & Wang, S. (2020). Dielectric properties, heating rate, and heating uniformity of wheat flour with added bran associated with radio frequency treatments. Innovative Food Science & Emerging Technologies, 60, 102290.

    Article  Google Scholar 

  • Lin, L., Guo, D., Zhao, L., Zhang, X., Wang, J., Zhang, F., & Wei, C. (2016). Comparative structure of starches from high–amylose maize inbred lines and their hybrids. Food Hydrocolloids, 52, 19–28.

    Article  CAS  Google Scholar 

  • Lin, Q., Shen, H., Ma, S., Zhang, Q., Yu, X., & Jiang, H. (2023). Morphological distribution and structure transition of gluten induced by various drying technologies and its effects on Chinese dried noodle quality characteristics. Food and Bioprocess Technology, 16(6), 1374–1387.

    Article  CAS  Google Scholar 

  • Ling, B., Cheng, T., & Wang, S. (2020). Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60(15), 2622–2642.

    Article  CAS  PubMed  Google Scholar 

  • Ling, B., Lyng, J. G., & Wang, S. (2018). Radio-frequency treatment for stabilization of wheat germ: Dielectric properties and heating uniformity. Innovative Food Science & Emerging Technologies, 48, 66–74.

    Article  Google Scholar 

  • Luo, Y., Shen, M., Li, E., Xiao, Y., Wen, H., Ren, Y., & Xie, J. (2020). Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydrate Polymers, 230, 115713.

    Article  CAS  PubMed  Google Scholar 

  • Ma, M., Zhang, Y., Chen, X., Li, H., Sui, Z., & Corke, H. (2020). Microwave irradiation differentially affect the physicochemical properties of waxy and non-waxy hull-less barley starch. Journal of Cereal Science, 95, 103072.

    Article  CAS  Google Scholar 

  • Ma, S., Zhang, Q., Lin, Q., Pan, L., Yu, X., & Jiang, H. (2023). Performance of 3D-printed samples based on starch treated by radio frequency energy. Innovative Food Science & Emerging Technologies, 85, 103337.

    Article  CAS  Google Scholar 

  • Ma, Y., Xu, D., Sang, S., Jin, Y., Xu, X., & Cui, B. (2021). Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocolloids, 112, 106362.

    Article  CAS  Google Scholar 

  • Mahmood, N., Liu, Y., Saleemi, M. A., Munir, Z., Zhang, Y., & Saeed, R. (2023). Investigation of physicochemical and textural properties of brown rice by hot air assisted radio frequency drying. Food and Bioprocess Technology, 16, 1555–1569.

    Article  CAS  Google Scholar 

  • Malumba, P., Janas, J., Masimango, T., Sindic, M., Deroanne, C., & B´era, F. (2009). Influence of drying temperature on the wet–milling performance and the proteins solubility indexes of corn kernels. Journal of Food Engineering, 95, 393–399.

    Article  CAS  Google Scholar 

  • Marta, H., Cahyana, Y., Bintang, S., Soeherman, G. P., & Djali, M. (2022). Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. International Journal of Food Properties, 25(1), 792–812.

    Article  CAS  Google Scholar 

  • Ramos, A. H., Rockenbach, B. A., Ferreira, C. D., Gutkoski, L. C., & de Oliveira, M. (2019). Characteristics of flour and starch isolated from red rice subjected to different drying conditions. Starch-Stärke, 71(7–8), 1800257.

    Article  Google Scholar 

  • Sacilik, K., Tarimci, C., & Colak, A. (2006). Dielectric properties of flaxseeds as affected by moisture content and bulk density in the radio frequency range. Biosystems Engineering, 93(2), 153–160.

    Article  Google Scholar 

  • Sandhu, K. S., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507.

    Article  CAS  Google Scholar 

  • Shapter, F. M., Henry, R. J., & Lee, L. S. (2008). Endosperm and starch granule morphology in wild cereal relatives. Plant Genetic Resources-Characterization and Utilization, 6, 85–97.

    Article  Google Scholar 

  • Sun, Q., Han, Z., Wang, L., & Xiong, L. (2014). Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chemistry, 145, 756–764.

    Article  CAS  PubMed  Google Scholar 

  • Timm, N. S., Ramos, A. H., Ferreira, C. D., Biduski, B., Eicholz, E. D., & Oliveira, M. (2020). Effects of drying temperature and genotype on morphology and technological, thermal, and pasting properties of corn starch. International Journal of Biological Macromolecules, 165, 354–364.

    Article  CAS  PubMed  Google Scholar 

  • Vela, A. J., Villanueva, M., Solaesa, Á. G., & Ronda, F. (2021). Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocolloids, 113, 106480.

    Article  CAS  Google Scholar 

  • Villanueva, M., De Lamo, B., Harasym, J., & Ronda, F. (2018). Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydrate Polymers, 201, 374–381.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Wang, M., Zhou, Y., Wu, Y., & Ouyang, J. (2022a). Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry, 377, 131990.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Bai, Y., Ji, H., Dong, J., Li, X., Liu, J., & Jin, Z. (2022b). Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocolloids, 124, 107289.

    Article  CAS  Google Scholar 

  • Wani, A. A., Singh, P., Shah, M. A., Schweiggert-Weisz, U., Gul, K., & Wani, I. A. (2012). Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties—A review. Comprehensive Reviews in Food Science and Food Safety, 11(5), 417–436.

    Article  CAS  Google Scholar 

  • Xie, Y., Zhang, Y., Xie, Y., Li, X., Liu, Y., & Gao, Z. (2020). Radio frequency treatment accelerates drying rates and improves vigor of corn seeds. Food Chemistry, 319, 126597.

    Article  CAS  PubMed  Google Scholar 

  • Xu, A., Lin, L., Guo, K., Liu, T., Yin, Z., & Wei, C. (2019). Physicochemical properties of starches from vitreous and floury endosperms from the same maize kernels. Food Chemistry, 291, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., & Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids, 69, 473–482.

    Article  CAS  Google Scholar 

  • Yao, Y., Zhang, B., Zhou, L., Wang, Y., Fu, H., Chen, X., & Wang, Y. (2022). Steam-assisted radio frequency blanching to improve heating uniformity and quality characteristics of stem lettuce cuboids. Food and Bioprocess Technology, 15(8), 1907–1917.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, Y., Ling, J., Yang, R., Zhu, L., & Zhao, W. (2022a). Radio frequency treatment improved the slowly digestive characteristics of rice flour. LWT, 154, 112862.

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhang, B., Zhu, L., & Zhao, W. (2022b). Microstructure, digestibility and physicochemical properties of rice grains after radio frequency treatment. Foods, 11(12), 1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Zhang, M., Zhang, B., Wang, Y., & Zhao, W. (2022c). Radio frequency energy regulates the multi-scale structure, digestive and physicochemical properties of rice starch. Food Bioscience, 47, 101616.

    Article  Google Scholar 

  • Zhong, Y. J., Xiang, X. Y., Zhao, J. C., Wang, X. H., Chen, R. Y., Xu, J. G., Luo, S. J., Wu, J. Y., & Liu, C. M. (2020). Microwave pretreatment promotes the annealing modification of rice starch. Food Chemistry, 304, 125432.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, D., Yang, G., Tian, Y., Kang, J., & Wang, S. (2023). Different effects of radio frequency and heat block treatments on multi-scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocolloids, 136, 108306.

    Article  CAS  Google Scholar 

  • Zhou, X., Li, R., Lyng, J. G., & Wang, S. (2018). Dielectric properties of kiwifruit associated with a combined radio frequency vacuum and osmotic drying. Journal of Food Engineering, 239, 72–82.

    Article  Google Scholar 

  • Ziegler, V., Timm, N. S., Ferreira, C. D., Goebel, J. T., Pohndorf, R. S., & Oliveira, M. (2020). Effects of drying temperature of red popcorn grains on the morphology, technological, and digestibility properties of starch. International Journal of Biological Macromolecules, 145, 568–574.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Liuyang Ren: conceptualization, methodology, formal analysis, investigation, software, writing—original draft, writing—review and editing. Zhaohui Zheng: investigation, resources. Hanyu Fu: investigation, formal analysis. Pei Yang: methodology, visualization. Jingshen Xu: visualization, software. Weijun Xie: visualization, software. Deyong Yang: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Deyong Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The mechanism of HA-RF treatments on drying quality of corn starch was elucidated.

• HA-RF reduced the crystallinity and short-range order structures of corn starch.

• HA-RF promoted the distribution of water and lipids into starch granules at high MC.

• HA-RF enhanced the starch–protein interaction with increasing temperature.

• Effect of HA-RF treatment was influenced by the MC and drying temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Zheng, Z., Fu, H. et al. Radio Frequency Modulates the Multi-scale Structure and Physicochemical Properties of Corn Starch: The Related Mechanism. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03357-5

Keywords

Navigation