Skip to main content
Log in

Glycerin-Betaine-Based Natural Eutectic Solvent Enhanced the Spray Drying Resistance of Lactobacillus

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Spray drying is a promising technique for embedding and stabilizing lactic acid bacteria. However, bacteria are unable to withstand high-temperature environment. Naturally small molecules fall short in meeting the evolving demands of production. Therefore, it is imperative to explore non-chemical pretreatment methods urgently, with the aim of enhancing their protective efficacy. In this study, natural deep eutectic solvents (NADES) were synthesized by glycerin-betaine to improve the survival rates of spray-dried Lactobacillus bulgaricus sp1.1. Results revealed that the spray drying survival rate of L. bulgaricus sp1.1 after adding NADES was 30.54%, which was 4.72 times higher than adding equal amounts of untreated glycerin and betaine, and the number of viable bacteria decreased less than 1 log after 6 months of storage. The investigation revealed that the impact of NADES was localized external to the cell rather than within. Through crosslinking with the peptidoglycan on the cell wall, NADES bolstered the cell wall structure thereby creating a protective barrier. This resulted in a reduction of damage to the membrane and ribosome induced by high temperatures during the lactic acid bacteria’s exposure. This study synthesized NADES using current protective agents as an effective method to enhance heat resistance of lactic acid bacteria for spray drying for the first time, and the lactic acid bacteria powder with high survival rate and high storage stability was successfully prepared, which provides a new approach for its industrial application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is contained within the article and available on request from the corresponding author.

References

  • Airouyuwa, J. O., Mostafa, H., Riaz, A., Stathopoulos, C., & Maqsood, S. (2023). Natural deep eutectic solvents and microwave-assisted green extraction for efficient recovery of bioactive compounds from by-products of date fruit (Phoenix dactylifera L.) processing: Modeling, optimization, and phenolic characterization. Food and Bioprocess Technology, 16(4), 824–843. https://doi.org/10.1007/s11947-022-02960-8

  • Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48–59. https://doi.org/10.1016/j.foodhyd.2018.02.028

  • Ambros, S., Bauer, S. A. W., Shylkina, L., Foerst, P., & Kulozik, U. (2016). Microwave-vacuum drying of lactic acid bacteria: Influence of process parameters on survival and acidification activity. Food and Bioprocess Technology, 9(11), 1901–1911. https://doi.org/10.1007/s11947-016-1768-0

    Article  CAS  Google Scholar 

  • Arepally, D., Reddy, R. S., Goswami, T. K., & Coorey, R. (2022). A review on probiotic microencapsulation and recent advances of their application in bakery products. Food and Bioprocess Technology, 15(8), 1677–1699. https://doi.org/10.1007/s11947-022-02796-2

    Article  CAS  Google Scholar 

  • Ashraf, W., Rehman, A., Hussain, A., Karim, A., Sharif, H. R., Siddiquy, M., & Lianfu, Z. (2023). Optimization of extraction process and estimation of flavonoids from fenugreek using green extracting deep eutectic solvents coupled with ultrasonication. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03170-6

    Article  Google Scholar 

  • Bouyanfif, A., Liyanage, S., Hewitt, J. E., Vanapalli, S. A., Moustaid-Moussa, N., Hequet, E., & Abidi, N. (2017). FTIR imaging detects diet and genotype-dependent chemical composition changes in wild type and mutant C-elegans strains. The Analyst, 142(24), 4727–4736. https://doi.org/10.1039/c7an01432e

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cai, L., Nian, L., Zhao, G., Zhang, Y., Sha, L., & Li, J. (2019). Effect of herring antifreeze protein combined with chitosan magnetic nanoparticles on quality attributes in red sea bream (Pagrosomus major). Food and Bioprocess Technology, 12(3), 409–421. https://doi.org/10.1007/s11947-018-2220-4

    Article  CAS  Google Scholar 

  • Castro, V. I. B., Mano, F., Reis, R. L., Paiva, A., & Duarte, A. R. C. (2018). Synthesis and physical and thermodynamic properties of lactic acid and malic acid-based natural deep eutectic solvents. Journal of Chemical & Engineering Data, 63(7), 2548–2556. https://doi.org/10.1021/acs.jced.7b01037

    Article  CAS  Google Scholar 

  • Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426–442. https://doi.org/10.1002/fft2.94

  • Du, T., Liu, Z., Guan, Q., Xiong, T., & Peng, F. (2023). Application of soy protein isolate–xylose conjugates for improving the viability and stability of probiotics microencapsulated by spray drying. Journal of the Science of Food and Agriculture, 103(13), 6500–6509. https://doi.org/10.1002/jsfa.12728

  • Feng, S., Wang, L., Shao, P., Sun, P., & Yang, C. S. (2022). A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Critical Reviews in Food Science and Nutrition, 62(20), 5638–5657. https://doi.org/10.1080/10408398.2021.1888692

    Article  CAS  PubMed  Google Scholar 

  • Freitas, D. S., Rocha, D., Castro, T. G., Noro, J., Castro, V. I. B., Teixeira, M. A., Reis, R. L., Cavaco-Paulo, A., & Silva, C. (2022). Green extraction of cork bioactive compounds using natural deep eutectic mixtures. Acs Sustainable Chemistry & Engineering, 10(24), 7974–7989. https://doi.org/10.1021/acssuschemeng.2c01422

    Article  CAS  Google Scholar 

  • FU, W., & ETZEL, M. R. (1995). Spray drying of Lactococcus lactis ssp. lactis C2 and cellular injury. Journal of Food Science, 60(1), 195–200. https://doi.org/10.1111/j.1365-2621.1995.tb05636.x

  • Fu, N., & Chen, X. D. (2011). Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44(5), 1127–1149. https://doi.org/10.1016/j.foodres.2011.03.053

  • Gao, C., Stading, M., Wellner, N., Parker, M. L., Noel, T. R., Mills, E. N. C., & Belton, P. S. (2006). Plasticization of a protein-based film by glycerol: A spectroscopic, mechanical, and thermal study. Journal of Agricultural and Food Chemistry, 54(13), 4611–4616. https://doi.org/10.1021/jf060611w

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, T., Beniwal, A., Semwal, A., & Navani, N. K. (2019). Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Frontiers in Microbiology, 10https://doi.org/10.3389/fmicb.2019.00502

  • Girardeau, A., Passot, S., Meneghel, J., Cenard, S., Lieben, P., Trelea, I., & Fonseca, F. (2022). Insights into lactic acid bacteria cryoresistance using FTIR microspectroscopy. Analytical and Bioanalytical Chemistry, 414(3), 1425–1443. https://doi.org/10.1007/s00216-021-03774-x

    Article  CAS  PubMed  Google Scholar 

  • Gong, P., Sun, J., Lin, K., Di, W., Zhang, L., & Han, X. (2019). Changes process in the cellular structures and constituents of Lactobacillus bulgaricus sp1.1 during spray drying. Lwt, 102, 30–36. https://doi.org/10.1016/j.lwt.2018.12.005

  • Gong, P., Di, W., Yi, H., Sun, J., Zhang, L., & Han, X. (2019). Improved viability of spray-dried Lactobacillus bulgaricus sp1.1 embedded in acidic-basic proteins treated with transglutaminase. Food Chemistry, 281, 204–212. https://doi.org/10.1016/j.foodchem.2018.12.095

  • Grace, M. H., Hoskin, R. T., Hayes, M., Iorizzo, M., Kay, C., Ferruzzi, M. G., & Lila, M. A. (2022). Spray-dried and freeze-dried protein-spinach particles; Effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics. Food Chemistry, 388, 133017. https://doi.org/10.1016/j.foodchem.2022.133017

  • Han, Y. H., Han, L. J., Yao, Y. M., Li, Y. F., & Liu, X. (2018). Key factors in FTIR spectroscopic analysis of DNA: The sampling technique, pretreatment temperature and sample concentration. Analytical Methods, 10(21), 2436–2443. https://doi.org/10.1039/c8ay00386f

    Article  CAS  Google Scholar 

  • Hao, F., Fu, N., Ndiaye, H., Woo, M. W., Jeantet, R., & Chen, X. D. (2021). Thermotolerance, survival, and stability of lactic acid bacteria after spray drying as affected by the increase of growth temperature. Food and Bioprocess Technology, 14(1), 120–132. https://doi.org/10.1007/s11947-020-02571-1

    Article  CAS  Google Scholar 

  • He, C., Sampers, I., Van de Walle, D., Dewettinck, K., & Raes, K. (2021). Encapsulation of Lactobacillus in low-methoxyl pectin-based microcapsules stimulates biofilm formation: Enhanced resistances to heat shock and simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry, 69(22), 6281–6290. https://doi.org/10.1021/acs.jafc.1c00719

    Article  CAS  PubMed  Google Scholar 

  • Hornberger, K., Li, R., Duarte, A. R. C., & Hubel, A. (2021). Natural deep eutectic systems for nature-inspired cryopreservation of cells. Aiche Journal, 67(2) https://doi.org/10.1002/aic.17085

  • Hu, X., Li, D., Qiao, Y., Song, Q., Guan, Z., Qiu, K., Cao, J., & Huang, L. (2020). Salt tolerance mechanism of a hydrocarbon-degrading strain: Salt tolerance mediated by accumulated betaine in cells. Journal of Hazardous Materials, 392, 122326. https://doi.org/10.1016/j.jhazmat.2020.122326

  • Huang, K., Yuan, Y., & Baojun, X. (2021). A critical review on the microencapsulation of bioactive compounds and their application. Food Reviews International, 1–41. https://doi.org/10.1080/87559129.2021.1963978

  • Huang, S., Yang, Y., Fu, N., Qin, Q., Zhang, L., & Chen, X. D. (2014). Calcium-aggregated milk: A potential new option for improving the viability of lactic acid bacteria under heat stress. Food and Bioprocess Technology, 7(11), 3147–3155. https://doi.org/10.1007/s11947-014-1331-9

    Article  CAS  Google Scholar 

  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: Technology and potential applications. Current Issues in Intestinal Microbiology, 3(2), 39–48

    CAS  PubMed  Google Scholar 

  • Kataoka, Y., Kitadai, N., Hisatomi, O., & Nakashima, S. (2011). Nature of hydrogen bonding of water molecules in aqueous solutions of glycerol by attenuated total reflection (ATR) infrared spectroscopy. Applied Spectroscopy, 65(4), 436–441. https://doi.org/10.1366/10-06183

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kochan, K., Perez-Guaita, D., Pissang, J., Jiang, J., Peleg, A. Y., McNaughton, D., Heraud, P., & Wood, B. R. (2018). In vivo atomic force microscopy–infrared spectroscopy of bacteria. Journal of the Royal Society Interface, 15(140), 20180115. https://doi.org/10.1098/rsif.2018.0115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Xie, Q., Liu, Q., Liu, J., Wan, C., Liang, D., & Zhang, H. (2020). Separation of phenolic compounds from oil mixtures by betaine-based deep eutectic solvents. Asia-Pacific Journal of Chemical Engineering, 15(6), e2515. https://doi.org/10.1002/apj.2515

  • Li, P., Ryder, M. R., & Stoddart, J. F. (2020b). Hydrogen-bonded organic frameworks: A rising class of porous molecular materials. Accounts of Materials Research, 1(1), 77–87. https://doi.org/10.1021/accountsmr.0c00019

    Article  CAS  Google Scholar 

  • Ma, C., Zhang, X. Q., Wang, K. Q., Jiang, J. Y., Zeng, J. H., Zhang, L. W., & Gong, P. M. (2023). Enhancing spray-drying tolerance of Lactobacillus bulgaricus via non-sporeforming dormancy induction. Innovative Food Science & Emerging Technologies, 84https://doi.org/10.1016/j.ifset.2023.103309

  • Macchioni, V., Carbone, K., Cataldo, A., Fraschini, R., & Bellucci, S. (2021). Lactic acid-based deep natural eutectic solvents for the extraction of bioactive metabolites of Humulus lupulus L.: Supramolecular organization, phytochemical profiling and biological activity. Separation and Purification Technology, 264, 118039. https://doi.org/10.1016/j.seppur.2020.118039

  • Madhurantakam, C., Howorka, S., & Remaut, H. (2014). S-layer structure in bacteria and archaea Nanomicrobiology (11–37). Springer

    Google Scholar 

  • Malmo, C., La Storia, A., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food and Bioprocess Technology, 6(3), 795–805. https://doi.org/10.1007/s11947-011-0755-8

    Article  CAS  Google Scholar 

  • Misra, S., Pandey, P., Dalbhagat, C. G., & Mishra, H. N. (2022). Emerging technologies and coating materials for improved probiotication in food products: A review. Food and Bioprocess Technology, 15(5), 998–1039. https://doi.org/10.1007/s11947-021-02753-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal, V., & Matsko, N. B. (2012). Surface functionalized polymer particles and thereby generation of PNIPAAM grafted monoliths by shear aggregation and ATRP. Journal of Polymer Research, 19(12), 25. https://doi.org/10.1007/s10965-012-0025-0

    Article  CAS  Google Scholar 

  • Mohd Fuad, F., & Mohd Nadzir, M. (2022). The formulation and physicochemical properties of betaine-based natural deep eutectic solvent. Journal of Molecular Liquids, 360, 119392. https://doi.org/10.1016/j.molliq.2022.119392

  • Nag, A., Waterland, M., & Singh, H. (2021). Effect on cell membrane structural integrity of xylitol-coated probiotics when stabilised with milk solids – A FTIR study. International Journal of Dairy Technology, 74(1), 128–138. https://doi.org/10.1111/1471-0307.12738

  • Nakagawa, H., & Oyama, T. (2019). Molecular basis of water activity in glycerol-water mixtures [Journal Article]. Frontiers in Chemistry, 7, 731. https://doi.org/10.3389/fchem.2019.00731

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Oliete, B., Yassine, S. A., Cases, E., & Saurel, R. (2019). Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Food Research International, 119, 444–454. https://doi.org/10.1016/j.foodres.2019.02.015

  • Oliveira, R. N., Mancini, M. C., Oliveira, F. C. S. D., Passos, T. M., Quilty, B., Thiré, R. M. D. S., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (rio De Janeiro), 21, 767–779

    Article  CAS  Google Scholar 

  • Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural deep eutectic solvents – Solvents for the 21st century. Acs Sustainable Chemistry & Engineering, 2(5), 1063–1071. https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  • Peighambardoust, S. H., Golshan Tafti, A., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science & Technology, 22(5), 215–224. https://doi.org/10.1016/j.tifs.2011.01.009

  • Pereira, A. L. F., Almeida, F. D. L., Lima, M. A., Da Costa, J. M. C., & Rodrigues, S. (2014). Spray-drying of probiotic cashew apple juice. Food and Bioprocess Technology, 7(9), 2492–2499. https://doi.org/10.1007/s11947-013-1236-z

    Article  CAS  Google Scholar 

  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food and Bioprocess Technology, 6(6), 1505–1515. https://doi.org/10.1007/s11947-012-0865-y

    Article  Google Scholar 

  • Quilès, F., Humbert, F., & Delille, A. (2010). Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 75(2), 610–616. https://doi.org/10.1016/j.saa.2009.11.026

  • Rabaioli Rama, G., Kuhn, D., Beux, S., Jachetti Maciel, M., & Volken De Souza, C. F. (2020). Cheese whey and ricotta whey for the growth and encapsulation of endogenous lactic acid bacteria. Food and Bioprocess Technology, 13(2), 308–322. https://doi.org/10.1007/s11947-019-02395-8

    Article  CAS  Google Scholar 

  • Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. Lwt - Food Science and Technology, 60(2, Part 1), 773–780. https://doi.org/10.1016/j.lwt.2014.09.062

  • Rodrigues, L. A., Cardeira, M., Leonardo, I. C., Gaspar, F. B., Radojčić Redovniković, I., Duarte, A. R. C., Paiva, A., & Matias, A. A. (2021). Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. Journal of Molecular Liquids, 335, 116201. https://doi.org/10.1016/j.molliq.2021.116201

  • Santana, A. P. R., Mora-Vargas, J. A., Guimarães, T. G. S., Amaral, C. D. B., Oliveira, A., & Gonzalez, M. H. (2019). Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. Journal of Molecular Liquids, 293, 111452. https://doi.org/10.1016/j.molliq.2019.111452

  • Santivarangkna, C., Kulozik, U., & Foerst, P. (2008). Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology, 105(1), 1–13. https://doi.org/10.1111/j.1365-2672.2008.03744.x

    Article  CAS  PubMed  Google Scholar 

  • Sasikumar, R., Das, M., Sahu, J. K., & Deka, S. C. (2020). Qualitative properties of spray-dried blood fruit (Haematocarpus validus) powder and its sorption isotherms. Journal of Food Process Engineering, 43(4), e13373. https://doi.org/10.1111/jfpe.13373

  • Sasikumar, R., Das, D., & Jaiswal, A. K. (2021). Effects of extraction methods and solvents on the bioactive compounds, antioxidant activity, and storage stability of anthocyanin rich blood fruit (Haematocarpus validus) extracts. Journal of Food Processing and Preservation, 45(5), e15401. https://doi.org/10.1111/jfpp.15401

  • Sasikumar, R., Sharma, P., & Jaiswal, A. K. (2023). Alginate and β-lactoglobulin matrix as wall materials for encapsulation of polyphenols to improve efficiency and stability, 19(1–2), 1–13.https://doi.org/10.1515/ijfe-2022-0202

  • Sasikumar, R., Das, M., & Deka, S. C. (2020b). Process optimization for the production of blood fruit powder by spray drying technique and its quality evaluation. Journal of Food Science and Technology, 57(6), 2269–2282. https://doi.org/10.1007/s13197-020-04264-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmer Olsen, E., Birkeland, S. E., & Sørhaug, T. (1999). Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration. Journal of Applied Microbiology, 87(3), 429–437. https://doi.org/10.1046/j.1365-2672.1999.00839.x

    Article  CAS  PubMed  Google Scholar 

  • Sharma, R., Rashidinejad, A., & Jafari, S. M. (2022). Application of spray dried encapsulated probiotics in functional food formulations. Food and Bioprocess Technology, 15(10), 2135–2154. https://doi.org/10.1007/s11947-022-02803-6

    Article  CAS  Google Scholar 

  • Slusarz, R., Szulc, M., & Madaj, J. (2014). Molecular modeling of Gram-positive bacteria peptidoglycan layer, selected glycopeptide antibiotics and vancomycin derivatives modified with sugar moieties [Journal Article; Research Support, Non-U.S. Gov’t]. Carbohydrate Research, 389, 154–164. https://doi.org/10.1016/j.carres.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  • Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2014). Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus NCIMB 701748 using spray drying. Food and Bioprocess Technology, 7(5), 1255–1268. https://doi.org/10.1007/s11947-013-1120-x

    Article  Google Scholar 

  • Suwannasang, S., Zhong, Q., Thumthanaruk, B., Uttapap, D., Puttanlek, C., Vatanyoopaisarn, S., & Rungsardthong, V. (2022). Optimization of wall material composition for production of spray-dried Sacha inchi oil microcapsules with desirable physicochemical properties. Food and Bioprocess Technology, 15(11), 2499–2514. https://doi.org/10.1007/s11947-022-02893-2

    Article  CAS  Google Scholar 

  • Teixeira, P., Castro, H., MohacsiFarkas, C., & Kirby, R. (1997). Identification of sites of injury in Lactobacillus bulgaricus during heat stress. Journal of Applied Microbiology, 83(2), 219–226. https://doi.org/10.1046/j.1365-2672.1997.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Wang, N., Fu, N., & Chen, X. D. (2022). The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review. Current Opinion in Food Science, 44, 100807.

    Article  CAS  Google Scholar 

  • William, N., & Acker, J. P. (2020). Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives. Cryobiology, 97, 123–130. https://doi.org/10.1016/j.cryobiol.2020.09.008

  • Yin, M., Yuan, Y., Chen, M., Liu, F., Saqib, M. N., Chiou, B., & Zhong, F. (2022). The dual effect of shellac on survival of spray-dried Lactobacillus rhamnosus GG microcapsules. Food Chemistry, 389, 132999. https://doi.org/10.1016/j.foodchem.2022.132999

  • Yin, M., Chen, M., Yuan, Y., Liu, F., & Zhong, F. (2024). Encapsulation of Lactobacillus rhamnosus GG in whey protein isolate-shortening oil and gum Arabic by complex coacervation: Enhanced the viability of probiotics during spray drying and storage. Food Hydrocolloids, 146, 109252. https://doi.org/10.1016/j.foodhyd.2023.109252

  • Zahrina, I., Nasikin, M., & Mulia, K. (2017). Evaluation of the interaction between molecules during betaine monohydrate-organic acid deep eutectic mixture formation. Journal of Molecular Liquids, 225, 446–450. https://doi.org/10.1016/j.molliq.2016.10.134

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32001664, 32372289), the China Postdoctoral Science Foundation (2021T140632), and the Taishan Industry Leading Talent of Shandong Province (LJNY202101).

Author information

Authors and Affiliations

Authors

Contributions

Jingya Jiang: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing-original draft. Xiaoning Song: Writing – review & editing, Software, Validation. Liming Zhao: Methodology. Song Wang: Methodology. Baochao Hou: Investigation, Methodology. Baolei Li:  Investigation, Methodology. Olayemi Eyituoyo Dudu Writing – review & editing. Huaxi Yi: Conceptualization, Investigation, Methodology. Lanwei Zhang: Funding acquisition, Investigation, Methodology. Writing – review & editing. Pimin Gong:Conceptualization, Funding acquisition, Resources, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Lanwei Zhang or Pimin Gong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Song, X., Zhao, L. et al. Glycerin-Betaine-Based Natural Eutectic Solvent Enhanced the Spray Drying Resistance of Lactobacillus. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03341-z

Keywords

Navigation