Skip to main content
Log in

Effect of Different Pretreatment Methods on Drying Characteristics and Quality of Wolfberry (Lycium barbarum) by Radio Frequency-Hot Air Combined Segmented Drying

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, fresh wolfberry in the current season was used as the experimental material, and a radio frequency (RF)-hot air combined segmented drying process was adopted for berry preservation. Ultrasonic treatment, hot water blanching, sucrose infiltration, ultrasonic and blanching, ultrasonic and infiltration, and NaOH and NaCl solution impregnation were used for pre-treatment of combined drying. Taking natural drying and conventional Na2CO3 dewaxing treatment as the control group, the effects of different pretreatment methods on drying characteristics, quality, and microstructure of wolfberry during combined drying were investigated. The drying time after ultrasonic and blanching pretreatment was the shortest (13.5 h), which effectively retained total flavonoids (1.79 mg/g) and enhanced their antioxidant activity (I = 60.78%). NaCl impregnation treatment significantly increased the total phenol content (8.77 mg/g), whereas the retention rate of soluble sugar (0.73 g/g), ascorbic acid (3.96 mg/100 g), betaine (2.72%), and other nutrients increased significantly after ultrasonic and infiltration treatment, with improved color, rehydration rate and microstructure over other treatment methods. The Weibull distribution function can accurately describe the RF-hot air combined drying process of wolfberry after different pretreatment, and simulated results were consistent with the results of the combined drying characteristic curve of wolfberry. The aim of this study was to explore suitable pretreatment methods to improve the drying rate and ensure the quality of dried products of wolfberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Ai, Z., Zhu, G., Zheng, Z., Xiao, H., Mowafy, S. G., & Liu, Y. (2022). Successive two-stage hot air-drying with humidity control combined radio frequency drying improving drying efficiency and nutritional quality of Amomi fructus. Food and Bioprocess Technology, 16, 149–166.

    Article  Google Scholar 

  • Ahmed, M., & Eun, J.-B. (2018). Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Critical Reviews in Food Science a Nd Nutrition, 58(16/18), 3159–3188.

    Article  CAS  Google Scholar 

  • Alipoorfard, F., Jouki, M., & Tavakolipour, H. (2020). Application of sodium chloride and quince seed gum pretreatments to prevent enzymatic browning, loss of texture and antioxidant activity of freeze dried pear slices. Journal of Food Science and Technology, 57, 3165–3175.

    Article  PubMed  PubMed Central  Google Scholar 

  • An, N.-N., Lv, W., Li, D.-X., Wang, L., & Wang, Y. (2022). Effects of hot-air microwave rolling blanching pretreatment on the drying of turmeric (Curcuma longa L.): Physiochemical properties and microstructure evaluation. Food chemistry, 398, 133925.

    Article  PubMed  Google Scholar 

  • An, K., Wei, L., Manqin, Fu., Cheng, L., Peng, J., & Jijun, Wu. (2020). Effect of carbonic maceration (CM) on the vacuum microwave drying of Chinese ginger (Zingiber officinale Roscoe) slices: Drying characteristic, moisture migration, antioxidant activity, and microstructure. Food and Bioprocess Technology, 13, 1661–1674.

    Article  Google Scholar 

  • Ando, Y., Okunishi, T., & Okadome, H. (2019). Influences of blanching and freezing pretreatments on moisture diffusivity and quality attributes of pumpkin slices during convective air-drying. Food and Bioprocess Technology, 12, 1821–1831. https://doi.org/10.1007/s11947-019-02340-9

  • Araújo, A. C., Oliveira, S. M., Ramos, I. N., et al. (2016). Influence of pretreatments on quality parameters and nutritional compounds of dried Galega Kale (Brassica oleraceaL. var. acephala). Food and Bioprocess Technology, 9, 872–881.

    Article  Google Scholar 

  • Ben Abdallah, S., Aung, B., Amyot, L., et al. (2016). Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiologiae Plantarum, 38, 72.

    Article  Google Scholar 

  • Bozkir, H., Ergün, A. R., Serdar, E., Metin, G., & Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics sonochemistry, 54, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z., Ding, C., Zhao, R., Song, Z., & Chen, H. (2021). Ultrasonic pretreatment-assisted electrohydrodynamic drying of potato slices. Journal of Food Quality, 2021, 1–13.

    Article  CAS  Google Scholar 

  • Dai, J. W., Rao, J. Q., Wang, D., et al. (2015). Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves. Drying Technology, 33(3), 365–376.

    Article  CAS  Google Scholar 

  • de Medeiros, R. A. B., da Silva Júnior, E. V., Barros, Z. M. P., da Silva, J. H. F., Brandão, S. C. R., & Azoubel, P. M. (2022). Convective drying of mango enriched with phenolic compounds from grape residue flour under different impregnation methods. Food Research International, 158, 111539. https://doi.org/10.1016/j.foodres.2022.111539

  • de Souza, A. U., Corrêa, J. L. G., Tanikawa, D. H., Abrahao, F. R., de Jesus Junqueira, J. R., & Jiménez, E. C. (2022). Hybrid microwave-hot air drying of the osmotically treated carrots. Lwt, 156, 113046. https://doi.org/10.1016/j.lwt.2021.113046

  • Doymaz, I. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. 88, 124–132. https://doi.org/10.1016/j.fbp.2009.09.003

  • Duan, Y. (2017). Effect of vacuum microwave drying on the quality of dried wolfberry fruit. Ningxia University, Master Degree Thesis. https://kns.cnki.net/kcms2/article/abstract?v=yXT3uqWUX_9X29i8eCZYD7QG8MNd3HG04fwWg7ZdoqsXt6CaNSWgjyrjqirr9eXDxU3pZVXWmBaNCUqHVGYN3YVOfww4p2IEn73Bu3ksN9SPZMshPxjRo11uflYlKKgL2gcpBIB3ipoEVdhVQg8CQ==uniplatform=NZKPTlanguage=CHS

  • Gong, C., Liao, M., Zhang, H., Yuanrong, Xu., Miao, Y., & Jiao, S. (2020). Investigation of hot air–assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology, 13, 419–429.

    Article  CAS  Google Scholar 

  • Jiang, N., Liu, C., Li, D., & Zhou, Y. (2015). Effect of blanching on the dielectric properties and microwave vacuum drying behavior of Agaricus bisporus slices. Innovative Food Science & Emerging Technologies, 30, 89–97. https://doi.org/10.1016/j.ifset.2015.05.001

    Article  Google Scholar 

  • Ju, H. Y., Zhang, Q., Mujumdar, A. S., et al. (2016). Hot-air drying kinetics of yam slices under step change in relative humidity. International Journal of Food Engineering, 12(8), 783–792.

    Article  Google Scholar 

  • Kafkas, N. E., Oğuz H. İ., & Oğuz, İ. (2021). Evaluation of fruit characteristics of various organically-grown goji berry (Lycium barbarum L., Lycium chinense Miller) species during ripening stages. Journal of Food Composition and Analysis, 101, 103846. https://doi.org/10.1016/j.jfca.2021.103846

  • Kaur, P., Zalpouri, R., Singh, M., & Verma, S. (2020). Process optimization for dehydration of shelled peas by osmosis and three-stage convective drying for enhanced quality. Journal of Food Processing and Preservation, 44, e14983. https://doi.org/10.1111/jfpp.14983

  • Lemus-Mondaca, R. M., Miranda, A., & Grau, A. A. (2009). Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean papaya (Carica pubescens). Drying technology: An International Journal, 27(10/12), 1105–1115.

    Article  CAS  Google Scholar 

  • Lei, S.-J., Zhang, Y.-E., Chen, Y.-T., Chen, L., Chen, K., & Fu, C.-X. (2022). Effects of different processing methods on the chlorophyll structure in kiwifruit. Food & Function, 13(4), 2109–2119.

    Article  CAS  Google Scholar 

  • Li, L., Yu, Y., Xu, Y., Wu, J., Yu, Y., Peng, J., An, K., Zou, B., &Yang, W. (2021). Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). Lwt-Food Science & Technology, 138, 110653. https://doi.org/10.1016/j.lwt.2020.110653

  • Liu, Z.-L., Xie, L., Zielinska, M., Pan, Z., Deng, L.-Z., Zhang, J.-S., Gao, L., Wang, S.-Y., Zheng, Z.-A., & Xiao, H.-W. (2022). Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innovative Food Science & Emerging Technologies. https://doi.org/10.1016/j.ifset.2022.102948,77,(102948)

    Article  Google Scholar 

  • Luengo, E., Martínez, J. M., Álvarez, I., & Raso, J. (2016). Effects of millisecond and microsecond pulsed electric fields on red beet cell disintegration and extraction of betanines. Industrial Crops and Products, 84, 28–33. https://doi.org/10.1016/j.indcrop.2016.01.016

  • Lyu, J., Yi, J., Bi, J., Chen, Q., Zhou, L., & Liu, X. (2017). Effect of sucrose concentration of osmotic dehydration pretreatment on drying characteristics and texture of peach chips dried by infrared drying coupled with explosion puffing drying. Drying Technology: An International Journal, 35(13/16), 1887–1896.

    Article  Google Scholar 

  • Lyu, Y., Bi, J., Chen, Q., Wu, X., Gou, M., & Yang, X. (2022). Color enhancement mechanisms analysis of freeze-dried carrots treated by ultrasound-assisted osmosis (ascorbic acid-CaCl_2) dehydration. Food Chemistry, 381, 132255.1-132255.9.

    Article  Google Scholar 

  • Mao, Y., & Wang, S. (2021). Recent developments in radio frequency drying for food and agricultural products using a multi-stage strategy: A review. Critical Reviews in Food Science and Nutrition, 29, 1–18.

    Google Scholar 

  • Malaikritsanachalee, P., Choosri, W., & Choosri, T. (2020). Study on intermittent low-pressure superheated steam drying: Effect on drying kinetics and quality changes in ripe mangoes. Journal of Food Processing and Preservation, 44, e14669. https://doi.org/10.1111/jfpp.14669

  • Mehta, D., Siddiqui, M. W., et al. (2017). Effect of drying techniques and treatment with blanching on the physicochemical analysis of bitter-gourd and capsicum. LWT-Food Science & Technology, 84, 479–488.

    Article  CAS  Google Scholar 

  • Mengze, W. (2017). Research on vacuum freeze sublimation drying process technology of goji berries in Ningxia. Ningxia Hui Autonomous Region: Ningxia Senmiao Goji Berry Science and Technology Development Co., Ltd.

    Google Scholar 

  • Montesano, D., Rocchetti, G., Cossignani, L., Lucini, L., Simonetti, M. S., & Blasi, F. (2018). Italian Lycium barbarum L. berry: Chemical characterization and nutraceutical value. Natural product communications, 13(9), 1151–1156.

    Article  Google Scholar 

  • Nencini, C., Menchiari, A., Franchi, G. G., et al. (2011). In vitro antioxidant activity of aged extracts of some Italian Allium species. Plant Foods for Human Nutrition, 66(1), 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Önal, B., Adiletta, G., Crescitelli, A., Di Matteo, M., & Russo, P. (2019). Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food and Bioproducts Processing, 115, 87–99. https://doi.org/10.1016/j.fbp.2019.03.002

  • Peng, J., Yin, X., Jiao, S., Wei, K., Tu, K., & Pan, L. (2019). Air jet impingement and hot air-assisted radio frequency hybrid drying of apple slices. Lwt-Food Science & Technology, 116, 108517. https://doi.org/10.1016/j.lwt.2019.108517

  • Ren, F., Perussello, C. A., Zhang, Z., Kerry, J. P., & Tiwari, B. K. (2018). Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT-Food Science & Technology., 87, 102–111.

    Article  CAS  Google Scholar 

  • Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sledz, M., Wiktor, A., Rybak, K., Nowacka, M., & Witrowa-Rajchert, D. (2016). he impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied acoustics, 103, 148–156.

    Article  Google Scholar 

  • Thuwapanichayanan, R., Phowong, C., Jaisut, D., & Štencl, J. (2014). Effects of pretreatments and drying temperatures on drying characteristics, Antioxidant Properties and Color of Ginger Slice. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(5), 1125–1134.

    Article  CAS  Google Scholar 

  • Topcam, H., Gogus, F., Ozbek, H. N., Elik, A., Yanik, D. K., Dalgic, A. C., & Erdogdu, F. (2022). Hot air-assisted radio frequency drying of apricots: Mathematical modeling study for process design. Journal of Food Science, 87(2), 764–779.

    Article  CAS  PubMed  Google Scholar 

  • Turkiewicz, I. P., Wojdyło, A., Tkacz, K., Lech, K., & Nowicka, P. (2020). Osmotic dehydration as a pretreatment modulating the physicochemical and biological properties of the Japanese quince fruit dried by the convective and vacuum-microwave method. Food and Bioprocess Technology, 13, 1801–1816.

    Article  CAS  Google Scholar 

  • Vangapandu, V. R., & Bitra, V. S. (2023).“Optimization of process parameters of ohmic heating-assisted vacuum evaporation of guava juice and quality assessment of its concentrate.” Food and Bioprocess Technology, 1–16.

  • Wiktor, A., Nowacka, M., Anuszewska, A., Rybak, K., Dadan, M., & Witrowa-Rajchert, D. (2019). Drying kinetics and quality of dehydrated cranberries pretreated by traditional and innovative techniques. Journal of Food Science, 84, 1820–1828.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Kou, X., Zhou, X., et al. (2021). Effects of layer arrangement on heating uniformity and product quality after hot air assisted radio frequency drying of carrot. Innovative Food Science & Emerging Technologies, 69(8), 102667.

    Article  CAS  Google Scholar 

  • Wang, J., Xiao, H., Ye, J.-H., Wang, J., & Raghavan, V. (2019). Ultrasound pretreatment to enhance drying kinetics of kiwifruit (Actinidia deliciosa) slices: Pros and cons. Food and Bioprocess Technology, 12, 865–876.

    Article  Google Scholar 

  • Wu, B., Guo, X., Guo, Y., Ma, H., & Zhou, C. (2021). Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure. Food Chemistry, 358, 129845.1-129845.7.

    Article  Google Scholar 

  • Xu, B., Sylvain Tiliwa, E., Wei, B., Wang, B., Hu, Y., Zhang, L., Mujumdar, A. S., Zhou, C., & Ma, H. (2022a). Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrasonics Sonochemistry, 88, 106083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Wu, M., Zhang, X., Wang, B., Wang, S., Zheng, Z., ... & Wang, F. (2022b). Application of blanching pretreatment in herbaceous peony (Paeonia lactiflora Pall.) flower processing: Improved drying efficiency, enriched volatile profile and increased phytochemical content. Industrial Crops and Products, 188, 115663. https://doi.org/10.1016/j.indcrop.2022.115663

  • Xu, Y., Zang, Z., Zhang, Q., Wang, T., Shang, J., Huang, X., & Wan, F. (2022c). Characteristics and quality analysis of radio frequency-hot air combined segmented drying of wolfberry (Lycium barbarum). Foods, 11(11), 1645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, X., Zang, Y., Gu, J., Ding, H., Niu, Y., Zheng, X., Zhu, R., & Wang, Q. (2022). Microstructure analysis and quality evaluation of jujube slices dried by hot air combined with radio frequency heat treatment at different drying stages. Foods, 11(19), 3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Y., Zhang, Bo., Zhou, L., Wang, Y., Hongfei, Fu., Chen, X., & Wang, Y. (2022). Steam-assisted radio frequency blanching to improve heating uniformity and quality characteristics of stem lettuce cuboids. Food and Bioprocess Technology, 15, 1907–1917.

    Article  CAS  Google Scholar 

  • Zhang, H., Gong, C., Wang, X., Liao, M., Yue, J., & Jiao, S. (2019). Application of hot air-assisted radio frequency as second stage drying method for mango slices. Journal of Food Process Engineering, 42, e12974.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wan, F., Zang, Z., Jiang, C., Xu, Y., & Huang, X. (2022). Effect of ultrasonic far-infrared synergistic drying on the characteristics and qualities of wolfberry (Lycium barbarum L.). Ultrasonics Sonochemistry, 89, 106134. https://doi.org/10.1016/j.ultsonch.2022.106134

  • Zhao, D. (2018). Dynamic model and quality analysis of wolfberry hot air drying process. China Journal of Food, 3, 114–124.

    Google Scholar 

  • Zhao, L., Wang, D., Li, J., Shi, J., & Liu, Q. (2017). Vacuum far infrared drying characteristics and quality of wolfberry. Journal of Tianjin University of Science and Technology, 32(05), 17–22.

    Google Scholar 

  • Zhou, Y. H., Vidyarthi, S. K., Zhong, C. S., Zheng, Z. A., An, Y., Wang, J., Wei, Q., & Xiao, H-W. (2020) Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. Lwt-Food Science & Technology, 134, 110173. https://doi.org/10.1016/j.lwt.2020.110173

  • Zhou, X., Xu, R., Zhang, B., et al. (2018). Radio frequency-vacuum drying of kiwifruits: Kinetics, uniformity, and product quality. Food and Bioprocess Technology, 11, 2094–2109.

    Article  Google Scholar 

Download references

Funding

This research was funded by the Regional Science Fund Project (32160426).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Xu.Y. and Huang.X.; methodology, Xu.Y., Huang.X., Zang.Z. and Zhang.Q.; software, Xu.Y.; validation, Xu.Y., Huang.X., Zang.Z., Jiang.C. and Zhang.Q.; formal analysis, Xu.Y.; in-vestigation, Wang.T., Shang.J. and Wan.F.; resources, Wang.T., Shang.J. and Wan.F.; data curation, Xu.Y.; writing—original draft preparation, Xu.Y.; writing-review and editing, Xu.Y., Huang.X., Zang.Z., Jiang.C. and Zhang.Q.; visualization, Xu.Y.; supervision, Huang.X.; project administration, Huang.X. and Wan.F.; funding acquisition, Huang.X. and Wan.F. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaopeng Huang.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Completing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wan, F., Zang, Z. et al. Effect of Different Pretreatment Methods on Drying Characteristics and Quality of Wolfberry (Lycium barbarum) by Radio Frequency-Hot Air Combined Segmented Drying. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03340-0

Keywords

Navigation