Skip to main content
Log in

Effect of pH Shifting on Different Properties of Microwave-Extracted Soybean Meal Protein Isolate

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Extraction and improvement of plant-based protein isolate by microwave and pH shifting treatment have received increasing attention to widening its applications. In the current study, protein isolate was prepared by optimizing microwave treatment parameters from soybean meal, and the impact of pH shifting on the microwave-extracted soybean meal protein isolate (SMPI) was analyzed. The maximum yield and purity were obtained at the optimal microwave treatment conditions of 16:1 v/w, 600 W, and 32 s of liquid-solid ratio, power, and time respectively. The SMPI samples shifted at various pH after microwave treatment showed better functional characteristics like solubility, emulsion forming capacity, wettability, and foaming capacity and stability than the control sample (non-pH shifted). The structural characteristics of pH-shifted SMPI studied through FTRI and XRD indicated the presence of more ꞵ-sheets, increased hydrogen bonds, and less crystalline conformation than the control sample. The SMPI sample shifted near the isoelectric point of protein showed better thermal properties than other pH-shifted samples. This study demonstrated that pH shifting of SMPI extracted by microwave treatment causes desirable changes and can play a huge role in the utilization of soybean meal for food product development.

Graphical Abstract

Statement of Novelty

Current work includes the extraction of soybean meal protein isolate (SMPI) by optimizing microwave treatment parameters through response surface methodology. The optimized sample was adjusted at five different pHs and various functional, structural, and thermal properties were studied. The extraction yield and purity of soybean meal protein isolate obtained after optimizing microwave treatment parameters were noticeably higher than the conventional methods. Significant improvements were also observed in the structural, functional, and thermal properties of soybean meal protein isolate after pH adjustment as compared to protein isolate obtained without pH adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets that supported the finding of the current study are available from the corresponding author upon reasonable request.

References

  • Achouri, A., Nail, V., & Boye, J. I. (2012). Sesame protein isolate: Fractionation, secondary structure and functional properties. Food Research International, 46, 360–369.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, K., Chakraborty, C., & Barman, A. K. (2012). Effect of microwave and enzymatic treatment on the recovery of protein from Indian defatted rice bran meal. Journal of Oleo Science, 61, 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Bedin, S., Netto, F. M., Bragagnolo, N., & Taranto, O. P. (2020). Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Separation Science and Technology, 55, 300–312.

    Article  CAS  Google Scholar 

  • Behere, M., Patil, S. S., & Rathod, V. K. (2021). Rapid extraction of watermelon seed proteins using microwave and its functional properties. Preparative Biochemistry & Biotechnology, 51, 252–259.

    Article  CAS  Google Scholar 

  • Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, M. S., Potter, S. M., Sprouls, G., & Reinhard, M. (1992). Effect of soy protein isolate and soy fiber on color, physical and sensory characteristics of baked products. Journal of Food Quality, 15, 245–262.

    Article  CAS  Google Scholar 

  • Byler, D. M., & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers: Original Research on Biomolecules, 25, 469–487.

    Article  CAS  Google Scholar 

  • Cao, Y., & Tan, H. (2005). Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme and Microbial Technology, 36(2–3), 314–317.

    Article  CAS  Google Scholar 

  • Cheung, L., Wanasundara, J., & Nickerson, M. T. (2015). Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophysics, 10(1), 30–38.

    Article  Google Scholar 

  • Choi, I. L., Choi, S. J., Chun, J. K., & Moon, T. W. (2006). Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. Journal of Food Processing and Preservation, 30, 407–419.

    Article  CAS  Google Scholar 

  • Dabbour, M., He, R., Ma, H., & Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41, e12799.

  • Damodaran, S., & Parkin, K. L. (2018). Química de alimentos de Fennema. Artmed editora.

    Google Scholar 

  • De Oliveira, A. P. H., Omura, M. H., Barbosa, É. D. A. A., Bressan, G. C., Vieira, É. N. R., dos Reis Coimbra, J. S., & de Oliveira, E. B. (2020). Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125156.

  • Deng, Q., Wang, L., Wei, F., Xie, B., Huang, F., Huang, W., Shi, J., Huang, Q., Tian, B., & Xue, S. (2011). Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chemistry, 124, 1458–1465.

    Article  CAS  Google Scholar 

  • Elhag, H. E. E. A., Ajit, A., & Sulaiman, A. Z. (2020). Optimization and kinetic modelling of total water extracts and water soluble proteins in root extracts of Eurycoma apiculata by microwave assisted extraction. Materials Today: Proceedings, 31, 1–8.

    Google Scholar 

  • Fang, Z., Cai, X., Wu, J., Zhang, L., Fang, Y., & Wang, S. (2021). Effect of simultaneous treatment combining ultrasonication and pH-shifting on SPI in the formation of nanoparticles and encapsulating resveratrol. Food Hydrocolloids, 111, 106250.

  • Farrokhi, F., Badii, F., Ehsani, M. R., & Hashemi, M. (2019). Functional and thermal properties of nanofibrillated whey protein isolate as functions of denaturation temperature and solution pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 124002.

  • Fekria, A. M., Isam, A. M. A., Suha, O. A., & Elfadil, E. B. (2012). Nutritional and functional characterization of defatted seed cake of two Sudanese groundnut (Arachis Hypogaea) cultivars. International Food Research Journal, 19, 629–637.

    CAS  Google Scholar 

  • Foh, M. B. K., Wenshui, X., Amadou, I., & Jiang, Q. (2012). Influence of pH shift on functional properties of protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food and Bioprocess Technology, 5, 2192–2200.

    Article  CAS  Google Scholar 

  • Gao, H., Ma, L., Li, T., Sun, D., Hou, J., Li, A., & Jiang, Z. (2019). Impact of ultrasonic power on the structure and emulsifying properties of whey protein isolate under various pH conditions. Process Biochemistry, 81, 113–122.

    Article  CAS  Google Scholar 

  • Golly, M. K., Ma, H., Yuqing, D., Dandan, L., Quaisie, J., Tuli, J. A., Mintah, B. K., Dzah, C. S., & Agordoh, P. D. (2020). Effect of multi‐frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from walnut (Juglans regia L.) meal. Journal of Food Biochemistry, 44, e13210.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Mascaraque, L. G., & López-Rubio, A. (2016). Protein-based emulsion electrosprayed micro-and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. Journal of Colloid and Interface Science, 465, 259–270.

    Article  ADS  PubMed  Google Scholar 

  • Haque, M. A., Aldred, P., Chen, J., Barrow, C. J., & Adhikari, B. (2013). Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes. Food Chemistry, 141, 702–711.

    Article  CAS  PubMed  Google Scholar 

  • Horax, R., Hettiarachchy, N., Kannan, A., & Chen, P. (2011). Protein extraction optimisation, characterisation, and functionalities of protein isolate from bitter melon (Momordica charantia) seed. Food Chemistry, 124, 545–550.

    Article  CAS  Google Scholar 

  • Ji, J., Cronin, K., Fitzpatrick, J., & Miao, S. (2017). Enhanced wetting behaviours of whey protein isolate powder: The different effects of lecithin addition by fluidised bed agglomeration and coating processes. Food Hydrocolloids, 71, 94–101.

    Article  CAS  Google Scholar 

  • Jiang, J., Chen, J., & Xiong, Y. L. (2009). Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. Journal of Agricultural and Food Chemistry, 57, 7576–7583.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Xiong, Y. L., & Chen, J. (2010). pH shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions. Journal of Agricultural and Food Chemistry, 58, 8035–8042.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, S., Ding, J., Andrade, J., Rababah, T. M., Almajwal, A., Abulmeaty, M. M., & Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38, 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., Gao, Y., Li, J., Wang, K., Ma, C., Sun, D., Hussain, M. A., Qayum, A., & Hou, J. (2022). Consecutive pH-shift and ultrasound treatment modify the physicochemical properties of whey protein isolate. International Dairy Journal, 127, 105211.

    Article  CAS  Google Scholar 

  • Jian-hua, Z., Xiu-Rong, Z., & Xia-Tao, C. (2013). Study on the microwave extraction of protein from broken rice. Modern Food Science & Technology, 29, 294–296.

    Google Scholar 

  • Joshi, M., Adhikari, B., Aldred, P., Panozzo, J. F., & Kasapis, S. (2011). Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chemistry, 129, 1513–1522.

    Article  CAS  Google Scholar 

  • Kaur, M., & Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 102, 366–374.

    Article  CAS  Google Scholar 

  • Li, Y., Cheng, Y., Zhang, Z., Wang, Y., Mintah, B. K., Dabbour, M., Jiang, H., He, R., Ma, H., & Ma, H. (2020). Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrasonics Sonochemistry, 69, 105240.

    Article  CAS  PubMed  Google Scholar 

  • Mauri, A. N., & Añón, M. C. (2006). Effect of solution pH on solubility and some structural properties of soybean protein isolate films. Journal of the Science of Food and Agriculture, 86, 1064–1072.

    Article  CAS  Google Scholar 

  • Mir, N. A., Riar, C. S., & Singh, S. (2020). Structural modification in album (Chenopodium album) protein isolates due to controlled thermal modification and its relationship with protein digestibility and functionality. Food Hydrocolloids, 103, 105708.

  • Morales, R., Martínez, K. D., Ruiz-Henestrosa, V. M. P., & Pilosof, A. M. (2015). Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry, 26, 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International, 39, 945–963.

    Article  CAS  Google Scholar 

  • Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10, 543–555.

    Article  CAS  Google Scholar 

  • Omana, D. A., Pietrasik, Z., & Betti, M. (2012). Use of poultry protein isolate as a food ingredient: Sensory and color characteristics of low-fat Turkey bologna. Journal of Food Science, 77, S274–S280.

    Article  CAS  PubMed  Google Scholar 

  • Panpipat, W., & Chaijan, M. (2016). Potential production of healthier protein isolate from broiler meat using modified acid-aided pH shift process. Food and Bioprocess Technology, 9, 1259–1267.

    Article  CAS  Google Scholar 

  • Pezeshk, S., Rezaei, M., Hosseini, H., & Abdollahi, M. (2022). Ultrasound-assisted alkaline pH-shift process effects on structural and interfacial properties of proteins isolated from shrimp by-products. Food Structure, 32, 100273.

    Article  CAS  Google Scholar 

  • Phongthai, S., Lim, S. T., & Rawdkuen, S. (2016). Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. Journal of Cereal Science, 70, 146–154.

    Article  CAS  Google Scholar 

  • Rawat, R., & Saini, C. S. (2023). High-Intensity Ultrasound (HIUS) Treatment of sunnhemp protein isolate (Crotalaria juncea L.): Modification of functional, structural, and microstructural properties. Food and Bioprocess Technology, 1–14.

  • Rosas Ulloa, P., Ulloa, J. A., Ulloa Rangel, B. E., & López Mártir, K. U. (2022). Protein isolate from orange (Citrus sinensis L.) seeds: Effect of high-intensity ultrasound on its physicochemical and functional properties. Food and Bioprocess Technology, 1–14.

  • Shchekoldina, T., & Aider, M. (2014). Production of low chlorogenic and caffeic acid containing sunflower meal protein isolate and its use in functional wheat bread making. Journal of Food Science and Technology, 51, 2331–2343.

    Article  CAS  PubMed  Google Scholar 

  • Shen, P., Gao, Z., Xu, M., Rao, J., & Chen, B. (2020). Physicochemical and structural properties of proteins extracted from dehulled industrial hempseeds: Role of defatting process and precipitation pH. Food Hydrocolloids, 108, 106065.

  • Shevkani, K., Singh, N., Kaur, A., & Rana, J. C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids, 43, 679–689.

    Article  CAS  Google Scholar 

  • Singh, H., & Newstead, D. F. (1992). Aspects of proteins in milk powder manufacture. Advanced Dairy Chemistry-1: Proteins, (Ed. 2), 735–765.

  • Sofi, S. A., Singh, J., Muzaffar, K., Majid, D., & Dar, B. N. (2020). Physicochemical characteristics of protein isolates from native and germinated chickpea cultivars and their noodle quality. International Journal of Gastronomy and Food Science, 22, 100258.

  • Souza, A. C. P., Gurak, P. D., & Marczak, L. D. F. (2017). Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food and Bioproducts Processing, 102, 186–194.

    Article  Google Scholar 

  • Wang, C., Jiang, L., Wei, D., Li, Y., Sui, X., Wang, Z., & Li, D. (2011). Effect of secondary structure determined by FTIR spectra on surface hydrophobicity of soybean protein isolate. Procedia Engineering, 15, 4819–4827.

    Article  CAS  Google Scholar 

  • Wang, S., Yu, J., Gao, W., Pang, J., & Yu, J. (2006). Using X-ray diffractometry for identification of Fritillaria preparations according to geographical origin. Pharmaceutical Chemistry Journal, 40, 572–575.

    Article  CAS  Google Scholar 

  • Wei, Y., Yu, Z., Lin, K., Sun, C., Dai, L., Yang, S., Mao, L., Yuan, F., & Gao, Y. (2019). Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocolloids, 95, 336–348.

    Article  CAS  Google Scholar 

  • Wu, S., Fitzpatrick, J., Cronin, K., & Miao, S. (2019). The effect of pH on the wetting and dissolution of milk protein isolate powder. Journal of Food Engineering, 240, 114–119.

    Article  CAS  Google Scholar 

  • Yildiz, G., Andrade, J., Engeseth, N. E., & Feng, H. (2017). Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication. Journal of Colloid and Interface Science, 505, 836–846.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, M., Song, F., Wang, X. L., & Wang, Y. Z. (2012). Development of soy protein isolate/waterborne polyurethane blend films with improved properties. Colloids and Surfaces B: Biointerfaces, 100, 16–21.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhao, B., Zhang, J., Guo, X., & Wang, J. (2013a). Microwave-assisted extraction, chemical characterization of polysaccharides from Lilium davidii var. unicolor Salisb and its antioxidant activities evaluation. Food Hydrocolloids, 3, 346–356.

  • Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Huang, S., Ruan, X., Zhou, Q., & Sun, W. (2013). Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein. Food and Bioprocess Technology, 6, 1759–1769.

    Article  CAS  Google Scholar 

  • Zhao, X., Xu, X., & Zhou, G. (2021). Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chemistry, 343, 128501.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., Decker, E. A., & McClements, D. J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106, 853–861.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dipak Das acknowledges the AICTE Doctoral Fellowship (ADF) support from the All India Council for Technical Education (AICTE), New Delhi, India, and infrastructural support from Sant Longowal Institute of Engineering and Technology, Longowal, India.

Author information

Authors and Affiliations

Authors

Contributions

Dipak Das: Conceptualization, methodology, investigation, writing–original draft preparation, formal analysis. Parmjit Singh Panesar: Conceptualization, supervision, resources, writing–review and editing, project administration. Charanjiv Singh Saini: Conceptualization, supervision, writing–review and editing, visualization.

Corresponding author

Correspondence to Parmjit S. Panesar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Panesar, P.S. & Saini, C.S. Effect of pH Shifting on Different Properties of Microwave-Extracted Soybean Meal Protein Isolate. Food Bioprocess Technol 17, 640–655 (2024). https://doi.org/10.1007/s11947-023-03160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03160-8

Keywords

Navigation