Skip to main content
Log in

Bioactive Edible Films Based on LAB-Fermented Whey Solution and Potato Starch: Characterization and Storage Behavior

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aimed to develop and characterize bioactive edible films (EFs) based on LAB-fermented whey solution and potato starch and evaluate their physical, mechanical, and probiotic count during storage. Fermented whey solutions with Lactobacillus acidophilus and Lactobacillus rhamnosus were mixed with potato starch solution (1:1 v/v) to produce EFs, which were evaluated in their moisture, color, thickness, tensile strength, water vapor permeability, and probiotic load at the beginning and after 14 days of storage (4 ± 1 °C) using PET and LLDPE as secondary packages. Selected EFs were evaluated in their antimicrobial activity against Escherichia coli and their viable cell count and structure using laser scanning confocal (LSC) and environmental scanning electronic micrographs (ESEM), respectively. The thickness (37.5–62.5%) and tensile strength (86.4–136.4%) of EFs increased by adding fermented whey in the film formulation (compared to control EFs), while moisture, color parameters, and elongation at break were not affected. The probiotic count obtained after the gastrointestinal process was higher (1.64–1.82 log) than the obtained in not digested EFs, indicating a liberation of trapped microorganisms during the gastrointestinal process. In general, the package did not affect the mechanical properties of EFs. The probiotic count was not affected by the package and storage time, showing a similar viable count in both plate counting and LSC. Micrographs indicated that LAB-fermented whey EFs showed smooth surfaces without breakups; however, after storage, a reduction in thickness and a fractured surface were observed. Stored LAB-fermented EFs showed antimicrobial activity (21–22 mm inhibition zone) against E. coli. Fermented EFs showed adequate stability to be applied in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets obtained during the current study are available from the corresponding author upon reasonable request.

References

  • AOAC. (2000). Official methods of analysis of the association of official analytical chemists, 20th ed.; AOAC International: Washington, DC, USA.

  • Aparicio-Fernández, X., Vega-Ahuatzin, A., Ochoa-Velasco, C. E., Cid-Pérez, S., Hernández-Carranza, P., & Ávila-Sosa, R. (2018). Physical and antioxidant characterization of edible films added with red prickly pear (Opuntia ficus-indica L.) cv. San Martín peel and/or its aqueous extracts. Food and Bioprocess Technology, 11, 368–379.

    Article  Google Scholar 

  • ASTM. (1995). Standard test method for tensile properties of thin plastic sheeting; Method D882-American Society for testing and materials; ASTM: West Conshohocken. PA.

    Google Scholar 

  • ASTM. (1980). Standard test method for water vapor transmission of materials; Method E96-American Society for testing and materials; ASTM: West Conshohocken. PA.

    Google Scholar 

  • Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348–359.

    Article  CAS  PubMed  Google Scholar 

  • Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10, 412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceylan, H. G., & Atasoy, A. F. (2023). New bioactive edible packing systems/symbiotic edible films/coatings as carries of probiotics and prebiotics. In Press.

    Google Scholar 

  • Chen, W., Ma, S., Wang, Q., McClements, D. J., Liu, X., Ngai, T., & Liu, F. (2022). Fortification of edible films with bioactive agents: A review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition, 62, 5029–5055.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Montes, E., & Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10, 249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Espitia, P. J. P., Batista, R. A., Azeredo, H., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Research International, 90, 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Farajpour, R., Emam, Z., Moeini, S., Tavañolipour, H., & Safayan, S. (2020). Structural and physico-mechanical properties of potato starch-olive oil edible films reinforced with zein nanoparticles. International Journal of Biological Macromolecules, 149, 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Galus, S., Aytunga, E., Gniewosz, M., & Kraśniewska, K. (2020). Novel materials in the preparation of edible films and coatings- A review. Coatings, 10, 674.

    Article  CAS  Google Scholar 

  • Garavand, F., Jafarzadeh, S., Cacciotti, I., Vahedikia, N., Sarlak, Z., Tarhan, Ö., Yousefi, S., Rouhi, M., Castro-Muñoz, R., & Jafari, S. M. (2022a). Different strategies to reinforce the milk protein-based packaging composites. Trends in Food Science & Technology, 123, 1–14.

    Article  CAS  Google Scholar 

  • Garavand, F., Khodaei, D., Mahmud, N., Islam, J., Khan, I., Jafarzadeh, S., Tahergorabi, R., & Cacciotti, I. (2022b). Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 12, 1–21.

    Article  Google Scholar 

  • Garavand, F., Rouhi, M., Jafarzadeh, S., Khodaei, D., Cacciotti, I., Zargar, M., & Razavi, S. H. (2022c). Tuning the physicochemical, structural, and antimicrobial atributes of whey-bsed poly (L-lactic acid) (PLLA) films by chitosan nanoparticles. Frontiers in Nutrition, 9, 880520.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Anaya, M., Sepulveda, D. R., Zamudio-Flores, P., & Acosta-Muñiz, C. H. (2023). Bacteriophages as additives in edible films and coatings. Trends in Food Science & Technology, 132, 150–161.

    Article  Google Scholar 

  • Grujović, M. Z., Mladenović, K. G., Semedo-Lemsaddek, T., Laranjo, M., Stefanović, O. D., & Kocić-Tanackov, S. (2021). Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Comprehensive Revies in Food Science and Food Safety, 21, 1537–1567.

    Article  Google Scholar 

  • Guimarães, A., Ramos, O., Cerqueira, M., Venãncio, A., & Abrunhosa, L. (2020). Active whey protein edible films and coatings incorporating Lactobacillus buchneri for Penicillium nordicum control in cheese. Food and Bioprocess Technology, 13, 1074–1086.

    Article  Google Scholar 

  • Guo, M., Zhang, C., Zhang, C., Zhang, X., & Wu, Y. (2021). Lacticaseibacillus rhamnosus reduces the pathogenicity of Escherichia coli in chickens. Frontiers in Microbiology, 12, 664604.

    Article  PubMed  Google Scholar 

  • He, C., Sampers, I., & Raes, K. (2021). Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocolloids, 111, 106175.

    Article  CAS  Google Scholar 

  • Iversen, L., Rovina, K., Vonnie, J., Matanjun, P., Erna, K., ‘Aqilah, N., Felicia, W., & Funk, A.A. (2022). The emergence of edible and food-application coatings for food packaging: A review. Molecules, 27, 5604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, K. H., & Senft, J. A. (1985). An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. The Journal of Histochemistry and Cytochemistry, 33, 77–79.

    Article  CAS  PubMed  Google Scholar 

  • Kalantarmahdavi, M., Khanzadi, S., & Salari, A. (2021). Edible films incorporating with Lactobacillus plantarum based on sourdough, wheat flour, and gelatin: Films characterization and cell viability during storage and simulated gastrointestinal condition. Starch, 73, 2000268.

    Article  CAS  Google Scholar 

  • Kumar, L., Ramakanth, D., Akhila, K., & Gaikwad, K. (2022). Edible films and coatings for food packaging applications: A review. Environmental Chemistry Letters, 20, 875–900.

    Article  CAS  Google Scholar 

  • Mahmud, J., Sarmast, E., Shankar, S., & Lacroix, M. (2022). Advantages of nanotechnology developments in active food packaging. Food Research International, 154, 111023.

    Article  CAS  PubMed  Google Scholar 

  • Misra, S., Pandey, P., Dalbhagat, C. G., & Mishra, H. N. (2022). Emerging technologies and coating materials for improved probiotication in food products: A review. Food and Bioprocess Technology, 15, 998–1039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Modiri, S., Kasra, R., Reza, M., Dad, N., Ebadi, M., Shahbani, H., & Akbari, K. (2021). Growth optimization of Lactobacillus acidophilus for production of antimicrobial peptide acidocin 4356: Scale up from flask to lab-scale fermenter. Iran Journal of Biotechnology, 19, e2686.

    Google Scholar 

  • Mohammadi, R., Sohrabvandi, S., & Mohammad, A. (2012). The starter culture characteristics of probiotic microorganisms in fermented milks. Engineering in Life Sciences, 4, 399–409.

    Article  Google Scholar 

  • Nanda, S., Patra, B., Patel, R., Bakos, J., & Dalai, A. (2021). Innovations in applications and prospects of bioplastics and biopolymers: A review. Environmental Chemistry Letters, 20, 379–395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nisar, T., Alim, A., Iqbal, T., Iqbal, M., Tehseen, S., Zi-Chao, W., & Guo, Y. (2021). Functionality of different probiotic strains embedded in citrus pectin based edible films. International Journal of Food Science and Technology, 57, 1005–1015.

    Article  Google Scholar 

  • Ochoa-Velasco, C. E., Palestina-Rivera, J., Ávila-Sosa, R., Navarro-Cruz, A. R., Vera-López, O., Lazcano-Hernández, M., & Hernández-Carranza, P. (2022). Use of green (Opuntia megacantha) and red (Opuntia ficus-indica L.) cactus pear peels for developing a supplement rich in antioxidants, fiber, and Lactobacillus rhamnosus, 42, e101421.

  • Osés, J., Fernández-Pan, I., Mendoza, M., & Maté, J. I. (2009). Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity. Food Hydrocolloids, 23, 125–131.

    Article  Google Scholar 

  • Piccirilli, G. N., Soazo, M., Pérez, L. M., Delorenzi, N. J., & Verdini, R. A. (2019). Effect of storage conditions on the physicochemical characteristics of edible films based on whey protein concentrate and liquid smoke. Food Hydrocolloids, 87, 221–228.

    Article  CAS  Google Scholar 

  • Pop, O., Pop, C., Dufrechou, M., Vodnar, D., Socaci, S., Dulf, F., Minervini, F., & Suharoschi, R. (2020). Edible films and coating functionalization by probiotic incorporation: A review. Polymers, 12, 12.

    Article  CAS  Google Scholar 

  • Ramos, Ó., Pereira, J., Silva, S., Fernandes, J., Franco, M., Lopes-da-Silva, J., Pintadoo, M. E., & Malcata, F. (2012). Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. Journal of Dairy Science, 95, 6282–6292.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, A. M., Estevinho, B. M., & Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14, 209–231.

    Article  CAS  Google Scholar 

  • Sánchez-González, L., Quintero Saavedra, J. I., & Chiralt, A. (2014). Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Control, 35, 200–206.

    Article  Google Scholar 

  • Siddiqui, S. A., Zannou, O., Bahmid, N. A., Fidan, H., Alamou, A. F., Ashotovich, A., Hassoun, A., Fernando, I., Ibrahim, S. A., & Arsyad, M. (2022). Consumer behavior towards nanopackaging-A new trend in the food industry. Future Foods, 6, 100191.

    Article  CAS  Google Scholar 

  • Sid, S., Mor, R. S., Kishore, A., & Singh, V. (2021). Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends in Food Science & Technology, 115, 87–104.

    Article  CAS  Google Scholar 

  • Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B., & Medronho, B. (2019). Cellulose-based edible films for probiotic entrapment. Food Hydrocolloids, 88, 68–74.

    Article  CAS  Google Scholar 

  • Sogut, E., Filiz, E., & Seydim, A. C. (2022). Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. Journal of Dairy Science, 105, 4829–4842.

    Article  CAS  PubMed  Google Scholar 

  • Soukoulis, C., Singh, P., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2016). Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocolloids, 52, 876–887.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2022). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089.

    Article  Google Scholar 

  • Wai, S. N., How, Y. H., Saleena, L. A. K., Degraeve, P., Oulahal, N., & Pui, L. P. (2022). Chitosan-sodium caseinate composite edible film incorporated with probiotic Limosilactobacillus fermentum: Physical properties, viability, and antibacterial properties. Foods, 11, 3583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed by the Vicerrectoría de Investigación y Estudios de Posgrado of the Benemérita Universidad Autónoma de Puebla (project number: 000128-VIEP2022).

Author information

Authors and Affiliations

Authors

Contributions

Hernández-Carranza, Paola: Data acquisition, funding acquisition, investigation, methodology. Fierro-Corona, Guadalupe: Conceptualization, Data acquisition. Tapia-Maruri, Daniel: Data acquisition, methodology. Ruiz-Martínez, Isidra Guadalupe: Data acquisition, supervision. Ávila-Reyes, Sandra Victoria: Funding, validation, supervision. Ruiz-López, Irving Israel: Supervision, validation, visualization, writing—original draft. Ochoa-Velasco, Carlos Enrique: Conceptualization, formal analysis, funding acquisition, writing—original draft.

Corresponding author

Correspondence to C.E. Ochoa-Velasco.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (WMV 39779 KB)

Supplementary file2 (WMV 52755 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Carranza, P., Fierro-Corona, G., Tapia-Maruri, D. et al. Bioactive Edible Films Based on LAB-Fermented Whey Solution and Potato Starch: Characterization and Storage Behavior. Food Bioprocess Technol 16, 3045–3056 (2023). https://doi.org/10.1007/s11947-023-03115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03115-z

Keywords

Navigation