Skip to main content
Log in

Estimation of Apple Mealiness by Means of Laser Scattering Measurement

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Mealiness is a phenomenon in which intercellular adhesions in apples loosen during storage, causing a soft and floury texture at the time of eating, and leading to lower consumer preference. Although apples can be stored and commercially sold throughout the year, the occurrence of mealiness is not monitored during storage. Therefore, the objective of this research was to non-destructively estimate the mealiness of apple fruit by means of laser scattering measurement. This method is based on laser light backscattering imaging but can quantify a wider range of backscattered light than the conventional method by utilizing high dynamic range (HDR) rendering techniques. Lasers with wavelengths of 633 nm and 850 nm were used as a light source, and after acquiring backscattered images, profiles, and images were obtained. Profile features such as curve fitting coefficients and profile slopes and image features such as statistical image features and texture features were extracted from the profiles and images, respectively. PLS, SVM, and ANN models were used for the estimation of mealiness. The results of the estimation based on these features showed that the ANN model combining both wavelengths had a higher performance (R = 0.634, RMSE = 7.621) than the models constructed from features of single wavelength measurements. In order to further improve the performance of the model, we applied various ensemble learning methods to combine different estimation models. As a result, the ensemble model showed the highest performance (R = 0.682, RMSE = 7.281). These results suggest that laser scattering measurement is a promising method for estimating apple fruit mealiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abildgaard, O. H., Kamran, F., Dahl, A. B., Skytte, J. L., Nielsen, F. D., Thomsen, C. L., Andersen, P.E., Larsen, R., & Frisvad, J.R. (2015). Non-Invasive Assessment of Dairy Products Using Spatially Resolved Diffuse Reflectance Spectroscopy. Applied Spectroscopy 69(9), 1096–1105. https://doi.org/10.1366/14-07529

  • Adebayo, S. E., Hashim, N., Hass, R., Reich, O., Regen, C., Münzberg, M., et al. (2017). Using absorption and reduced scattering coefficients for non-destructive analyses of fruit flesh firmness and soluble solids content in pear (Pyrus communis ‘Conference’)—An update when using diffusion theory. Postharvest Biology and Technology, 130, 56–63. https://doi.org/10.1016/j.postharvbio.2017.04.004

    Article  Google Scholar 

  • Anderson, N. T., Walsh, K. B., Flynn, J. R., & Walsh, J. P. (2021). Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. II. Local PLS and nonlinear models. Postharvest Biology and Technology, 171. https://doi.org/10.1016/j.postharvbio.2020.111358

  • Arefi, A., Ahmadi Moghaddam, P., Hassanpour, A., Mollazade, K., & Modarres Motlagh, A. (2016). Non-destructive identification of mealy apples using biospeckle imaging. Postharvest Biology and Technology, 112, 266–276. https://doi.org/10.1016/j.postharvbio.2015.09.001

    Article  Google Scholar 

  • Askoura, M. L., Vaudelle, F., & L’Huillier, J. P. (2016). Experimental study of light propagation in apple tissues using a multispectral imaging system. Photonics, 3(3). https://doi.org/10.3390/photonics3030050

  • Babazadeh, S., Ahmadi Moghaddam, P., Sabatyan, A., & Sharifian, F. (2016). Classification of potato tubers based on solanine toxicant using laser-induced light backscattering imaging. Computers and Electronics in Agriculture, 129, 1–8. https://doi.org/10.1016/j.compag.2016.09.009

    Article  Google Scholar 

  • Baranyai, L., Regen, C., & Zude, M. (2009). Monitoring optical properties of apple tissue during cool storage. BornimerAgrartechnische Berichte, Leibniz Institute for AgriculturalEngineering Potsdam-Bornim (ATB), 112–119.

  • Barreiro, P., Ortiz, C., Ruiz-Altisent, M., De Smedt, V., Schotte, S., Andani, Z., et al. (1998). Comparison between sensory and instrumental measurements for mealiness assessment in apples. A collaborative test. Journal of Texture Studies, 29, 509–525. https://doi.org/10.1111/j.1745-4603.1998.tb00180.x

  • Barreiro, P., Ortiz, C., Ruiz-Altisent, M., Ruiz-Cabello, J., Fernández-Valle, M. E., Recasens, I., & Asensio, M. (2000). Mealiness assessment in apples and peaches using MRI techniques. Magnetic Resonance Imaging, 18, 1175–1181. https://doi.org/10.1016/S0730-725X(00)00179-X

  • Barreiro, P., Ruiz-Cabello, J., Fernández-Valle, M. E., Ortiz, C., & Ruiz-Altisent, M. (1999). Mealiness assessment in apples using MRI techniques. Magnetic Resonance Imaging, 17(2), 275–281. https://doi.org/10.1016/S0730-725X(98)00160-X

  • Bechar, A., Mizrach, A., Barreiro, P., & Landahl, S. (2005). Determination of mealiness in apples using ultrasonic measurements. Biosystems Engineering, 91(3), 329–334. https://doi.org/10.1016/j.biosystemseng.2005.04.008

    Article  Google Scholar 

  • Cárdenas-Pérez, S., Méndez-Méndez, J., & v., Chanona-Pérez, J. J., Zdunek, A., Güemes-Vera, N., Calderón-Domínguez, G., & Rodríguez-González, F. (2017). Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innovative Food Science and Emerging Technologies, 39, 79–87. https://doi.org/10.1016/j.ifset.2016.11.004

    Article  Google Scholar 

  • Cen, H., Lu, R., Mendoza, F., & Beaudry, R. M. (2013). Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue. Postharvest Biology and Technology, 8530–8538. https://doi.org/10.1016/j.postharvbio.2013.04.014

    Article  Google Scholar 

  • Chaïb, J., Devaux, M. F., Grotte, M. G., Robini, K., Causse, M., Lahaye, M., & Marty, I. (2007). Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. Journal of Experimental Botany, 58(8), 1915–1925. https://doi.org/10.1093/jxb/erm046

    Article  CAS  PubMed  Google Scholar 

  • Chen Jie Yu, Zhang Han, Yelian Miao, & Hiroki Inoue. (2011). Study on the evaluation of deliciousness of apples. Journal of the Japanese Society of Taste Technology, 17, 15–20. https://doi.org/10.11274/bimi2002.2011.17_15

  • Christodoulou, C. I., Pattichis, C. S., Pantziaris, M., & Nicolaides, A. (2003). Texture-based classification of atherosclerotic carotid plaques. IEEE Transactions on Medical Imaging 22(7), 902–912. https://doi.org/10.1109/TMI.2003.815066

  • Chu, A., Sehgal, C. M., & Greenleaf, J. F. (1990). Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 11, 415–420.

    Article  Google Scholar 

  • Ella Missang, C., Maingonnat, J. F., Renard, C. M. G. C., & Audergon, J. M. (2011). Texture variation in apricot: Intra-fruit heterogeneity, impact of thinning and relation with the texture after cooking. Food Research International, 44(1), 46–53. https://doi.org/10.1016/j.foodres.2010.11.017

    Article  Google Scholar 

  • Farrell, T. J., Patterson, M. S., & Wilson, B. (1992). A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical Physics, 19(4), 879–888. https://doi.org/10.1118/1.596777

    Article  CAS  PubMed  Google Scholar 

  • Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer Graphics and Image Processing, 4, 172–179. https://doi.org/10.1016/S0146-664X(75)80008-6

  • Gohain, B., Kumar, P., Malhotra, B., Augustine, R., Pradhan, A. K., & Bisht, N. C. (2021). A comprehensive Vis-NIRS equation for rapid quantification of seed glucosinolate content and composition across diverse Brassica oilseed chemotypes. Food Chemistry, 354. https://doi.org/10.1016/j.foodchem.2021.129527

  • Gwanpua, S. G., Verlinden, B. E., Hertog, M. L. A. T. M., Nicolai, B. M., Hendrickx, M., & Geeraerd, A. (2016). Slow softening of Kanzi apples (Malus × domestica L.) is associated with preservation of pectin integrity in middle lamella. Food Chemistry, 211, 883–891. https://doi.org/10.1016/j.foodchem.2016.05.138

    Article  CAS  PubMed  Google Scholar 

  • Harker, F. R., & Hallett, I. C. (1992). Physiological changes associated with development of mealiness of apple fruit during cool storage. Hortscience, 27(12), 1291–1294. https://doi.org/10.21273/HORTSCI.27.12.1291

  • Hayakawa, F., Kazami, Y., Nishinari, K., Ioku, K., Akuzawa, S., Yamano, Y., et al. (2012). Classification of Japanese texture terms. Journal of Texture Studies, 44(2), 140–159. https://doi.org/10.1111/jtxs.12006

    Article  Google Scholar 

  • Højager Attermann, O., et al., ‘In Depth Analysis of Food Structures Hyperspectral Subsurface Laser Scattering’, Physics (College Park Md), pp. 29–34, 2011.

  • Huang, M., & Lu, R. (2010). Apple mealiness detection using hyperspectral scattering technique. Postharvest Biology and Technology, 58(3), 168–175. https://doi.org/10.1016/j.postharvbio.2010.08.002

    Article  Google Scholar 

  • Huang, M., Zhu, Q., Wang, B., & Lu, R. (2012). Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification. Computers and Electronics in Agriculture, 89, 175–181. https://doi.org/10.1016/j.compag.2012.09.003

    Article  Google Scholar 

  • Iida, D., Kokawa, M., Saito, Y., Yamashita, T., & Kitamura, Y. (2022). Estimation of apple firmness using a simple laser scattering measurement device. Engineering in Agriculture, Environment and Food, 15(1), 24–33. https://doi.org/10.37221/eaef.15.1_24

  • Iwanami, H., Moriya, S., Kotoda, N., & Abe, K. (2008a). Turgor closely relates to postharvest fruit softening and can be a useful index to select a parent for producing cultivars with good storage potential in apple. Hortscience 43(5). https://doi.org/10.21273/HORTSCI.43.5.1377

  • Iwanami, H., Moriya, S., Kotoda, N., Takahashi, S., & Abe, K. (2005). Influence of mealiness on the firmness of apples after harvest. Hortscience, 40(7). https://doi.org/10.21273/HORTSCI.40.7.2091

  • Iwanami, H., Moriya, S., Kotoda, N., Takahashi, S., & Abe, K. (2008b). Estimations of heritability and breeding value for postharvest fruit softening in apple. Journal of the American Society for Horticultural Science, 133(1), 92–99. https://doi.org/10.21273/JASHS.133.1.92

  • Kaplan, L. M. (1999). Extended fractal analysis for texture classification and segmentation. IEEE Transactions on Image Processing 8(11), 1572–1585. https://doi.org/10.1109/83.799885

  • Khan, A. A., & Vincent, J. F. V. (1990). Anisotropy of apple parenchyma. Journal of the Science of Food and Agriculture, 52, 455–466. https://doi.org/10.1002/jsfa.2740520404

  • Lashgari, M, & Imanmehr, A. (2019). Acoustic detection of apple mealiness based on support vector machine. Archive of SID Iran Agricultural Research, 38(2), 65–70. https://doi.org/10.22099/iar.2019.32309.1328

  • Lashgari, M., Imanmehr, A., & Tavakoli, H. (2020). Fusion of acoustic sensing and deep learning techniques for apple mealiness detection. Journal of Food Science and Technology, 57(6), 2233–2240. https://doi.org/10.1007/s13197-020-04259-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Xu, R., Fang, Q., Yuan, Y., Cao, J., & Jiang, W. (2020). Analyses of microstructure and cell wall polysaccharides of flesh tissues provide insights into cultivar difference in mealy patterns developed in apple fruit. Food Chemistry, 321. https://doi.org/10.1016/j.foodchem.2020.126707

  • Liu, B., Wang, K., Shu, X., Liang, J., Fan, X., & Sun, L. (2019). Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Scientia Horticulturae, 246, 557–562. https://doi.org/10.1016/j.scienta.2018.11.042

    Article  Google Scholar 

  • Lockman, N. A., Hashim, N., & Onwude, D. I. (2019). Laser-based imaging for cocoa pods maturity detection. Food and Bioprocess Technology, 12(11), 1928–1937. https://doi.org/10.1007/s11947-019-02350-7

    Article  Google Scholar 

  • Ma, C., Feng, L., Pan, L., Wei, K., Liu, Q., Tu, K., et al. (2020). Relationships between optical properties of peach flesh with firmness and tissue structure during storage. Postharvest Biology and Technology, 163. https://doi.org/10.1016/j.postharvbio.2020.111134

  • Ma, T., Xia, Y., Inagaki, T., & Tsuchikawa, S. (2021). Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR spatially resolved spectroscopy. Postharvest Biology and Technology, 173. https://doi.org/10.1016/j.postharvbio.2020.111417

  • Mehinagic, E., Royer, G., Bertrand, D., Symoneaux, R., Laurens, F., & Jourjon, F. (2003). Relationship between sensory analysis, penetrometry and visible-NIR spectroscopy of apples belonging to different cultivars. Food Quality and Preference, 14(5–6), 473–484. https://doi.org/10.1016/S0950-3293(03)00012-0

    Article  Google Scholar 

  • Mendes-Moreira, J., Soares, C., Jorge, A. M., & de Sousa, J. F. (2012). November). Ensemble Approaches for Regression: A Survey. ACM Computing Surveys. https://doi.org/10.1145/2379776.2379786

    Article  Google Scholar 

  • Mizuno, K., Ishiguri, T., Kondo, T., & Kato, T. (1988). Prediction of forage compositions and sheep responses by near infrared reflectance spectroscopy 1. Evaluation of Accuracy. Bulletin of National Grassland Research Institute, 38, 35–47.

    Google Scholar 

  • Mollazade, K., & Arefi, A. (2017). Optical analysis using monochromatic imaging-based spatially-resolved technique capable of detecting mealiness in apple fruit. Scientia Horticulturae, 225, 589–598. https://doi.org/10.1016/j.scienta.2017.08.005

    Article  Google Scholar 

  • Mollazade, K., Omid, M., Akhlaghian Tab, F., Kalaj, Y. R., Mohtasebi, S. S., & Zude, M. (2013). Analysis of texture-based features for predicting mechanical properties of horticultural products by laser light backscattering imaging. Computers and Electronics in Agriculture, 98, 34–45. https://doi.org/10.1016/j.compag.2013.07.011

    Article  Google Scholar 

  • Mollazade, K., Omid, M., Tab, F. A., & Mohtasebi, S. S. (2012). Principles and applications of light backscattering imaging in quality evaluation of agro-food products: A review. Food and Bioprocess Technology, 5(5), 1465–1485. https://doi.org/10.1007/s11947-012-0821-x

    Article  Google Scholar 

  • Moriya, S., Kunihisa, M., Okada, K., Iwanami, H., Iwata, H., Minamikawa, M., et al. (2017). Identification of QTLs for flesh mealiness in apple (Malus × domestica Borkh.). Horticulture Journal, 86(2), 159–170. https://doi.org/10.2503/hortj.MI-156

  • Moshou, D., Wahlen, S., Strasser, R., Schenk, A., & Ramon, H. (2003). Apple mealiness detection using fluorescence and self-organising maps. Computers and Electronics in Agriculture, 40, 103–114. https://doi.org/10.1016/S0168-1699(03)00014-0

    Article  Google Scholar 

  • Motomura, Y., Takahashi, J., & Nara, K. (2000). Quantitative measurement of mealiness in apple flesh. Bulletin of the Faculty of Agriculture and Life Sciences, Hirosaki University, 3, 23–28.

    Google Scholar 

  • Mozaffari, M., Sadeghi, S., & Asefi, N. (2022). Prediction of the quality properties and maturity of apricot by laser light backscattering imaging. Postharvest Biology and Technology, 186. https://doi.org/10.1016/j.postharvbio.2022.111842

  • Muziri, T., Theron, K. I., Cantre, D., Wang, Z., Verboven, P., Nicolai, B. M., & Crouch, E. M. (2016). Microstructure analysis and detection of mealiness in ‘Forelle’ pear (Pyrus communis L.) by means of X-ray computed tomography. Postharvest Biology and Technology, 120, 145–156. https://doi.org/10.1016/j.postharvbio.2016.06.006

    Article  Google Scholar 

  • Neto, H. A., Tavares, W. L. F., Ribeiro, D. C. S. Z., Alves, R. C. O., Fonseca, L. M., & Campos, S. V. A. (2019). On the utilization of deep and ensemble learning to detect milk adulteration. BioData Mining, 12(1). https://doi.org/10.1186/s13040-019-0200-5

  • Otsu, N. (1979). A threshold selection method from Gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/tsmc.1979.4310076

  • Parastar, H., van Kollenburg, G., Weesepoel, Y., van den Doel, A., Buydens, L., & Jansen, J. (2020). Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity. Food Control, 112. https://doi.org/10.1016/j.foodcont.2020.107149

  • Peng, Y, & Lu, R. (2005). Modeling multispectral scattering profiles for prediction of apple fruit firmness. American Society of Agricultural Engineers, 48(1), 235–242. https://doi.org/10.13031/2013.17923

  • Peng, Y., & Lu, R. (2006). Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biology and Technology, 41(3), 266–274. https://doi.org/10.1016/j.postharvbio.2006.04.005

    Article  Google Scholar 

  • Qing, Z., Ji, B., & Zude, M. (2007). Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. Journal of Food Engineering, 82(1), 58–67. https://doi.org/10.1016/j.jfoodeng.2007.01.016

    Article  Google Scholar 

  • Rezaei Kalaj, Y., Mollazade, K., Herppich, W., Regen, C., & Geyer, M. (2016). Changes of backscattering imaging parameter during plum fruit development on the tree and during storage. Scientia Horticulturae, 202, 63–69. https://doi.org/10.1016/j.scienta.2016.02.029

    Article  Google Scholar 

  • Richard, D., Alessandro, A. F., & Michael, D. (2021). BoneJ2 - refactoring established research software. Wellcome Open Research, 6. https://doi.org/10.12688/wellcomeopenres.16619.1

  • Romano, G., Baranyai, L., Gottschalk, K., & Zude, M. (2008). An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering imaging. Food and Bioprocess Technology, 1(4), 410–414. https://doi.org/10.1007/s11947-008-0113-7

    Article  Google Scholar 

  • Saei, A., Tustin, D. S., Zamani, Z., Talaie, A., & Hall, A. J. (2011). Cropping effects on the loss of apple fruit firmness during storage: The relationship between texture retention and fruit dry matter concentration. Scientia Horticulturae, 130(1), 256–265. https://doi.org/10.1016/j.scienta.2011.07.008

    Article  Google Scholar 

  • Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosystems Engineering, 91(4), 393–402. https://doi.org/10.1016/j.biosystemseng.2005.05.001

    Article  Google Scholar 

  • Sanchez, P. D. C., Hashim, N., Shamsudin, R., & Mohd Nor, M. Z. (2020a). Quality evaluation of sweet potatoes (Ipomoea batatas L.) of different varieties using laser light backscattering imaging technique. Scientia Horticulturae, 260. https://doi.org/10.1016/j.scienta.2019.108861

  • Sanchez, P. D. C., Hashim, N., Shamsudin, R., & Nor, M. Z. M. (2020b). Laser-light backscattering imaging approach in monitoring and classifying the quality changes of sweet potatoes under different storage conditions. Postharvest Biology and Technology, 164. https://doi.org/10.1016/j.postharvbio.2020.111163

  • Shen, T., Yu, H., & Wang, Y. Z. (2020). Discrimination of Gentiana and its related species using IR spectroscopy combined with feature selection and stacked generalization. Molecules, 25(6). https://doi.org/10.3390/molecules25061442

  • Suzuki, Y., Okamoto, H., Tanaka, K., Kato, W., & Kataoka, T. (2008). Estimation of chemical composition of grass in meadows using hyperspectral imaging. Environmental Control in Biology, 46(2), 129–137. https://doi.org/10.2525/ecb.46.129

  • Tang, X. (1998). Texture information in run-length matrices. IEEE Transactions on Image Processing, 7(11), 1602–1609. https://doi.org/10.1109/83.725367

    Article  CAS  PubMed  Google Scholar 

  • Ting, V. J. L., Silcock, P., Bremer, P. J., & Biasioli, F. (2013). X-ray micro-computer tomographic method to visualize the microstructure of different apple cultivars. Journal of Food Science, 78(11). https://doi.org/10.1111/1750-3841.12290

  • Van Beers, R., Aernouts, B., Watté, R., Schenk, A., Nicolaï, B., & Saeys, W. (2017) Effect of maturation on the bulk optical properties of apple skin and cortex in the 500–1850 nm wavelength range. Journal of Food Engineering, 21479–21489. https://doi.org/10.1016/j.jfoodeng.2017.06.013

    Article  Google Scholar 

  • Wu, C. -M., & Chen, Y. C. (1992). Statistical Feature Matrix for Texture Analysis. Graphical Models And Image Processing, 54(5), 407–419.

  • Wu, C. M., Chen, Y. C., & Hsieh, K. S. (1992). Texture Features for Classification of Ultrasonic Liver Images. IEEE Trans Med Imaging, 11(2).

  • Wu, L. Y., & Weng, S. S. (2021). Ensemble learning models for food safety risk prediction. Sustainability, 13(21). https://doi.org/10.3390/su132112291

  • Zheng, C., Sun, D. W., & Zheng, L. (2006). Recent applications of image texture for evaluation of food qualities—A review. Trends in Food Science and Technology, 17(3), 113–128. https://doi.org/10.1016/j.tifs.2005.11.006

    Article  CAS  Google Scholar 

  • Zhou, Z.-H. (2021). Machine Learning. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-1967-3

  • Zulkifli, N., Hashim, N., Abdan, K., & Hanafi, M. (2019). Application of laser-induced backscattering imaging for predicting and classifying ripening stages of “Berangan” bananas. Computers and Electronics in Agriculture, 160, 100–107. https://doi.org/10.1016/j.compag.2019.02.031

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ando from the National Agriculture and Food Research Organization, Japan, for his assistance in operating the micro X-ray CT.

Funding

This work was partly supported by JSPS KAKENHI Grant Number 17K15354.

Author information

Authors and Affiliations

Authors

Contributions

Daiki Iida designed and conducted the experiments and wrote the main manuscript. Mito Kokawa designed the research project, constructed the measurement device, edited the manuscript, and prepared the figures. Yutaka Kitamura oversaw the research project and was in charge of overall supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mito Kokawa.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iida, D., Kokawa, M. & Kitamura, Y. Estimation of Apple Mealiness by Means of Laser Scattering Measurement. Food Bioprocess Technol 16, 2483–2496 (2023). https://doi.org/10.1007/s11947-023-03068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03068-3

Keywords

Navigation