Abstract
Marine-capture shrimp is a general term for a type of shrimp that is different from marine-aquaculture shrimp. It is rich in protein, trace elements, and essential amino acids. It is an aquatic product with delicious meat and high nutritional and economic value. Most marine-capture shrimp are consumed fresh, with a small proportion subjected to processing. However, marine-capture shrimp is a highly perishable aquatic product, and hence, extensive preservation and processing methods have been developed to extend its shelf life. This review presents the current status of marine-capture shrimp in the world and the key issues (spoilage and melanization inhibition) regarding marine-capture shrimp preservation. Low-temperature preservation remains the predominant strategy for preserving marine-capture shrimp. Different preservation strategies combined with low temperature would maintain the quality of marine-capture shrimp more effectively, thereby extending the shelf life of the shrimp. The advantages and disadvantages of various preservation technologies are comprehensively considered and compared, as well as their scope of application. New processing technologies should be introduced, and various preservation technologies with complementary advantages should be organically combined to achieve the best preservation effect on marine-capture shrimp. This review provides a useful theoretical reference and a practical basis for future research on the shelf life extension of marine-capture shrimp.
Similar content being viewed by others
Data Availability
The data are available from the corresponding author upon suitable request.
References
Abie, S. M., Muench, D., Egelandsdal, B., Bjerke, F., Wergeland, I., & Martinsen, O. G. (2021). Combined 0.2 T static magnetic field and 20 kHz, 2 V/cm square wave electric field do not affect supercooling and freezing time of saline solution and meat samples. Journal of Food Engineering, 311, 110710. https://doi.org/10.1016/j.jfoodeng.2021.110710
Alparslan, Y., & Baygar, T. (2017). Effect of chitosan film coating combined with orange peel essential oil on the shelf life of deepwater pink shrimp. Food and Bioprocess Technology, 10(5), 842–853. https://doi.org/10.1007/s11947-017-1862-y
Alparslan, Y., Metin, C., Yapici, H. H., Baygar, T., Gunlu, A., & Baygar, T. (2017). Combined effect of orange peel essential oil and gelatin coating on the quality and shelf life of shrimps. Journal of Food Safety and Food Quality-Archiv Fur Lebensmittelhygiene, 68(3), 69–78. https://doi.org/10.2376/0003-925x-68-69
Annamalai, J., Lakshmi, N. M., Sivam, V., & Rao, R. C. N. (2018). A comparative study on the quality changes of croaker (Johnius dussumieri) fish stored in slurry ice and flake ice. Journal of Aquatic Food Product Technology, 27(4), 508–517. https://doi.org/10.1080/10498850.2018.1449152
Arvanitoyannis, I. S., Vasiliki, K., Bouletis, A. D., & Papaloucas, C. (2011). Study of changes in physicochemical and microbiological characteristics of shrimps (Melicertus kerathurus) stored under modified atmosphere packaging. Anaerobe, 17(6), 292–294. https://doi.org/10.1016/j.anaerobe.2011.04.006
Asik, E., & Candogan, K. (2014). Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. Journal of Food Quality, 37(4), 237–246. https://doi.org/10.1111/jfq.12088
Avola, C., Licciardello, F., Mazzaglia, A., Giannone, V., Zanti, C., & Muratore, G. (2011). Quality evaluation of shrimps (Parapenaeus longirostris) as affected by edible films. Italian Journal of Food Science, 23, 99–102.
Bak, L. S., Andersen, A. B., Andersen, E. M., & Bertelsen, G. (1999). Effect of modified atmosphere packaging on oxidative changes in frozen stored cold water shrimp (Pandalus borealis). Food Chemistry, 64(2), 169–175. https://doi.org/10.1016/s0308-8146(98)00152-6
Bingol, E. B., Bostan, K., Varlik, C., Uran, H., Alakavuk, D. U., & Sivri, N. (2015). Effects of chitosan treatment on the quality parameters of shrimp (Parapenaeus longirostris) during chilled storage. Turkish Journal of Fisheries and Aquatic Sciences, 15(4), 821–831. https://doi.org/10.4194/1303-2712-v15_4_05
Bingol, E. B., Uran, H., Bostan, K., Varlik, C., Sivri, N., & Alakavuk, D. U. (2013). Effects of treatment with chitosan on sensory and chemical quality parameters of frozen shrimp. Kafkas Universitesi Veteriner Fakultesi Dergisi, 19(3), 399–405. https://doi.org/10.9775/kvfd.2012.7902
Bono, G., Badalucco, C. V., Cusumano, S., & Palmegiano, G. B. (2012). Toward shrimp without chemical additives: a combined freezing-MAP approach. Lwt-Food Science and Technology, 46(1), 274–279. https://doi.org/10.1016/j.lwt.2011.09.020
Bono, G., Okpala, C. O. R., Alberio, G. R. A., Messina, C. M., Santulli, A., Giacalone, G., & Spagna, G. (2016). Toward shrimp consumption without chemicals: combined effects of freezing and modified atmosphere packaging (MAP) on some quality characteristics of Giant Red Shrimp (i) during storage. Food Chemistry, 197, 581–588. https://doi.org/10.1016/j.foodchem.2015.10.146
Bouletis, A. D., Arvanitoyannis, I. S., & Hadjichristodoulou, C. (2017). Application of modified atmosphere packaging on aquacultured fish and fish products: a review. Critical Reviews in Food Science and Nutrition, 57(11), 2263–2285. https://doi.org/10.1080/10408398.2013.862202
Broekaert, K., Heyndrickx, M., Herman, L., Devlieghere, F., & Vlaemynck, G. (2013). Molecular identification of the microbiota of peeled and unpeeled brown shrimp (Crangon crangon) during storage on ice and at 7.5 degrees C. Food Microbiology, 36(2), 123–134. https://doi.org/10.1016/j.fm.2013.04.009
Buyukcan, M., Bozoglu, F., & Alpas, H. (2009). Preservation and shelf-life extension of shrimps and clams by high hydrostatic pressure. International Journal of Food Science and Technology, 44(8), 1495–1502. https://doi.org/10.1111/j.1365-2621.2007.01628.x
Calliauw, F., De Mulder, T., Broekaert, K., Vlaemynck, G., Michiels, C., & Heyndrickx, M. (2016). Assessment throughout a whole fishing year of the dominant microbiota of peeled brown shrimp (Crangon crangon) stored for 7 days under modified atmosphere packaging at 4 degrees C without preservatives. Food Microbiology, 54, 60–71. https://doi.org/10.1016/j.fm.2015.10.016
Campus, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineering Reviews, 2(4), 256–273. https://doi.org/10.1007/s12393-010-9028-y
Ding, L., Lu, M., & Xue, Y. (2021). Driving factors on implementation of seasonal marine fishing moratorium system in China using evolutionary game. Marine Policy, 133, 104707. https://doi.org/10.1016/j.marpol.2021.104707
EFSA. (2011). Scientific opinion on the chemical safety of irradiation of food. EFSA Journal, 9(4), 1930. https://doi.org/10.2903/j.efsa.2011.1930
Elvira Lopez-Caballero, M., Martinez-Alvarez, O., del Carmea, G. -G., & Montero, P. (2007). Quality of thawed deepwater pink shrimp (Parapenaeus longirostris) treated with melanosis-inhibiting formulations during chilled storage. International Journal of Food Science and Technology, 42(9), 1029–1038. https://doi.org/10.1111/j.1365-2621.2006.01328.x
Esua, O. J., Cheng, J. H., & Sun, D. W. (2021). Functionalization of water as a nonthermal approach for ensuring safety and quality of meat and seafood products. Critical Reviews in Food Science and Nutrition, 61(3), 431–449. https://doi.org/10.1080/10408398.2020.1735297
Faisal, M., Vasiljevic, T., & Donkor, O. N. (2019). Effects of selected processing treatments on antigenicity of banana prawn (Fenneropenaeus merguiensis) tropomyosin. International Journal of Food Science and Technology, 54(1), 183–193. https://doi.org/10.1111/ijfs.13922
Fan, Y., Schneider, K. R., & Sarnoski, P. J. (2022). Determining spoilage of whiteleg shrimp (Litopanaeus vannemei) during refrigerated storage using colorimetric strips. Food Chemistry X, 14, 100263. https://doi.org/10.1016/j.fochx.2022.100263
FAO. (2021). FAO Yearbook. Fishery and Aquaculture Statistics 2019/FAO annuaire. Retrieved January 22,2022. https://www.fao.org/fishery/en/publications/287024
Fishery Knowledge Service System. (2022). Chinese Academy of Fishery Sciences (CAFS). Retrieved January 22, 2022, from http://fishery.ckcest.cn/featureYearbook.html
Gao, Y., Jiang, H., Lv, D., Benjakul, S., & Zhang, B. (2021). Shelf-life of half-shell mussel (Mytilus edulis) as affected by pullulan, acidic electrolyzed water, and stable chlorine dioxide combined ice-glazing during frozen storage. Foods, 10(8), 1896.
Garcia-Soto, B., Miranda, J. M., Barros-Velazquez, J., & Aubourg, S. P. (2015). Quality changes during the frozen storage of the crustacean lobster krill (Munida spp.). European Journal of Lipid Science and Technology, 117(4), 431–439. https://doi.org/10.1002/ejlt.201400309
Ge, Y., Li, Y., Wu, T., Bai, Y., Yuan, C., Chen, S., & Hu, Y. (2020). The preservation effect of CGA-Gel combined with partial freezing on sword prawn (Parapenaeopsis hardwickii). Food Chemistry, 313, 126078. https://doi.org/10.1016/j.foodchem.2019.126078
George, R. M. (1993). Freezing proceseses used in the food industry. Trends in Food Science & Technology, 4(5), 134–138. https://doi.org/10.1016/0924-2244(93)90032-6
Goncalves, A. A., & Duarte Ribeiro, J. L. (2008). Optimization of the freezing process of red shrimp (Pleoticus muelleri) previously treated with phosphates. International Journal of Refrigeration-Revue Internationale Du Froid, 31(7), 1134–1144. https://doi.org/10.1016/j.ijrefrig.2008.03.005
Goncalves, A. A., & Duarte Ribeiro, J. L. (2009). Effects of phosphate treatment on quality of red shrimp (Pleoticus muelleri) processed with cryomechanical freezing. Lwt-Food Science and Technology, 42(8), 1435–1438. https://doi.org/10.1016/j.lwt.2009.03.016
Goncalves, A. A., & Guidobono Gindri Junior, C. S. (2009). The effect of glaze uptake on storage quality of frozen shrimp. Journal of Food Engineering, 90(2), 285–290. https://doi.org/10.1016/j.jfoodeng.2008.06.038
Goncalves, A. A., & Lira Santos, T. C. (2019). Improving quality and shelf-life of whole chilled Pacific white shrimp (Litopenaeus vannamei) by ozone technology combined with modified atmosphere packaging. Lwt-Food Science and Technology, 99, 568–575. https://doi.org/10.1016/j.lwt.2018.09.083
Goncalves, A. C., Lopez-Caballero, M. E., & Nunes, M. L. (2003). Quality changes of deepwater pink shrimp (Parapenaeus longirostris) packed in modified atmosphere. Journal of Food Science, 68(8), 2586–2590. https://doi.org/10.1111/j.1365-2621.2003.tb07065.x
Gringer, N., Skytte, J. L., Tem Thi, D., Orlien, V., Olsen, K., Schlippe-Steffensen, K., & Jessen, F. (2020). Effect of ice maturation, freezing and heat treatment on the peelability and quality of cold water shrimps (Pandalus borealis). Lwt-Food Science and Technology, 134, 110139. https://doi.org/10.1016/j.lwt.2020.110139
Guo, B., Wang, F., Dong, S., Dong, Y., & Tian, X. (2010). The effects of cyclical temperature changes on growth and physiological status of Litopenaeus vannamei. Aquaculture International, 18(5), 921–932. https://doi.org/10.1007/s10499-009-9314-y
Guo, M., Jin, T. Z., Yang, R., Antenucci, R., Mills, B., Cassidy, J., & Sommers, C. H. (2013). Inactivation of natural microflora and inoculated Listeria innocua on whole raw shrimp by ozonated water, antimicrobial coatings, and cryogenic freezing. Food Control, 34(1), 24–30. https://doi.org/10.1016/j.foodcont.2013.04.009
Hocaoglu, A., Demirci, A. S., Gumus, T., & Demirci, M. (2012). Effects of gamma irradiation on chemical, microbial quality and shelf life of shrimp. Radiation Physics and Chemistry, 81(12), 1923–1929. https://doi.org/10.1016/j.radphyschem.2012.07.017
Hou, D., Huang, Z., Zeng, S., Liu, J., Wei, D., Deng, X., & He, J. (2018). Intestinal bacterial signatures of white feces syndrome in shrimp. Applied Microbiology and Biotechnology, 102(8), 3701–3709. https://doi.org/10.1007/s00253-018-8855-2
Huang, M., Zhang, M., & Bhandari, B. (2019). Recent development in the application of alternative sterilization technologies to prepared dishes: a review. Critical Reviews in Food Science and Nutrition, 59(7), 1188–1196. https://doi.org/10.1080/10408398.2017.1421140
Huang, W., Ji, H., Liu, S., Zhang, C., Chen, Y., Guo, M., & Hao, J. (2014). Inactivation effects and kinetics of polyphenol oxidase from Litopenaeus vannamei by ultra-high pressure and heat. Innovative Food Science & Emerging Technologies, 26, 108–115. https://doi.org/10.1016/j.ifset.2014.10.005
Huidobro, A., Lopez-Caballero, M. E., & Mendes, R. (2002). Onboard processing of deepwater pink shrimp (Parapenaeus longirostris) with liquid ice: effect on quality. European Food Research and Technology, 214(6), 469–475. https://doi.org/10.1007/s00217-002-0490-5
Ji, W., Bao, Y., Wang, K., Yin, L., & Zhou, P. (2021). Protein changes in shrimp (Metapenaeus ensis) frozen stored at different temperatures and the relation to water-holding capacity. International Journal of Food Science and Technology, 56(8), 3924–3937. https://doi.org/10.1111/ijfs.15009
Jiang, H. B., & Kanost, M. R. (2000). The clip-domain family of serine proteinases in arthropods. Insect Biochemistry and Molecular Biology, 30(2), 95–105. https://doi.org/10.1016/s0965-1748(99)00113-7
Jin, L., Ding, G., Li, P., Gu, J., & Zhang, X. (2018). Changes in quality attributes of marine-trawling shrimp (Solenocera crassicornis) during storage under different deep-frozen temperatures. Journal of Food Science and Technology-Mysore, 55(8), 2890–2898. https://doi.org/10.1007/s13197-018-3207-x
Kaur, B. P., Kaushik, N., Rao, P. S., & Chauhan, O. P. (2013). Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (Penaeus monodon). Food and Bioprocess Technology, 6(6), 1390–1400. https://doi.org/10.1007/s11947-012-0870-1
Kaur, B. P., Kaushik, N., Rao, P. S., & Mishra, H. N. (2015). Chilled storage of high pressure processed black tiger shrimp (Penaeus monodon). Journal of Aquatic Food Product Technology, 24(3), 283–299. https://doi.org/10.1080/10498850.2013.772271
Kim, J. G., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. Advances in Food and Nutrition Research, 45, 167–218.
Kontominas, M. G., Badeka, A. V., Kosma, I. S., & Nathanailides, C. I. (2021). Innovative seafood preservation technologies: recent developments. Animals, 11(1), 92. https://doi.org/10.3390/ani11010092
Lan, W., Sun, Y., Feng, H., & Xie, J. (2022). Effects of slightly acidic electrolyzed water pretreatment combined with compound bio-preservatives on quality and microbiota changes of refrigerated obscure pufferfish (Takifugu obscurus). Journal of Food Processing and Preservation, 46(2), e16287. https://doi.org/10.1111/jfpp.16287
Leng, D., Zhang, H., Tian, C., & Xu, H. (2022). Low temperature preservation developed for special foods in East Asia: a review. Journal of Food Processing and Preservation, 46(1), e16176. https://doi.org/10.1111/jfpp.16176
Lin, D. Q., Sun, L. C., Chen, Y. L., Liu, G. M., Miao, S., & Cao, M. J. (2022). Shrimp spoilage mechanisms and functional films/coatings used to maintain and monitor its quality during storage. Trends in Food Science and Technology, 129, 25–27. https://doi.org/10.1016/j.tifs.2022.08.020
Li, G., Sinclair, A. J., & Li, D. (2011). Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from China. Journal of Agricultural and Food Chemistry, 59(5), 1871–1881. https://doi.org/10.1021/jf104154q
Lifemap. National Center of Biotechnology Information (NCBI). Retrieved January 25, 2023, from http://lifemap-ncbi.univ-lyon1.fr
Lin, H. M., Deng, S. G., Huang, S. B., & Guo, H. (2016). Effects of precooling with slurry ice on the quality and microstructure of anglerfish (Lophius americanus) liver. Journal of Food Process Engineering, 39(1), 3–10. https://doi.org/10.1111/jfpe.12193
Lin, T., Wang, J. J., Li, J. B., Liao, C., Pan, Y. J., & Zhao, Y. (2013). Use of acidic electrolyzed water ice for preserving the quality of shrimp. Journal of Agricultural and Food Chemistry, 61(36), 8695–8702. https://doi.org/10.1021/jf4019933
Linton, M., & Patterson, M. F. (2000). High pressure processing of foods for microbiological safety and quality (a short review). Acta Microbiologica Et Immunologica Hungarica, 47(2−3), 175–182. https://doi.org/10.1556/AMicr.47.2000.2-3.3
Liu, B., & Pan, S. (2020). Effect of chitosan coatings incorporated sodium phytate on the shelf-life of Antarctic krill (Euphausia superba). International Journal of Biological Macromolecules, 151, 62–65. https://doi.org/10.1016/j.ijbiomac.2020.02.148
Liu, J., Wang, Y., Zhu, F. X., Yang, J., Ma, X. H., Lou, Y. J., & Li, Y. Y. (2022). The effects of freezing under a high-voltage electrostatic field on ice crystals formation, physicochemical indices, and bacterial communities of shrimp (Solenocera melantho). Food Control, 142, 109238. https://doi.org/10.1016/j.foodcont.2022.109238
Liu, L., Lan, W., Pu, T., Zhou, Y., & Xie, J. (2021). Combining slightly acidic electrolyzed water and slurry ice to prolong the shelf-life of mackerel (Pneumatophorus japonicus). Journal of Food Processing and Preservation, 45(9), e15762. https://doi.org/10.1111/jfpp.15762
Lopez-Caballero, M. E., Goncalves, A., & Nunes, M. L. (2002). Effect of CO2/O-2-containing deepwater pink shrimp modified atmospheres on packed (Parapenaeus longirostris). European Food Research and Technology, 214(3), 192–197. https://doi.org/10.1007/s00217-001-0472-z
Lopez-Caballero, M. E., Martinez-Alvarez, O., Gomez-Guillen, M. C., & Montero, P. (2019). Several melanosis-inhibiting formulas to enhance the quality of deepwater pink shrimp (Parapenaeus longirostris). Innovative Food Science & Emerging Technologies, 51, 91–99. https://doi.org/10.1016/j.ifset.2018.07.008
Lu, S. (2009). Effects of bactericides and modified atmosphere packaging on shelf-life of Chinese shrimp (Fenneropenaeus chinensis). Lwt-Food Science and Technology, 42(1), 286–291. https://doi.org/10.1016/j.lwt.2008.03.004
Lv, M. C., Zhang, H., Mei, K. L., Yang, W. G., & Wang, Z. Y. (2020). Effects of High Pressure on Myofibrillar Protein and Moisture Distribution of Shrimp (Solenocera melantho) Muscle. Journal of Aquatic Food Product Technology, 29(3), 220–228. https://doi.org/10.1080/10498850.2020.1718818
Martinez- Alvarez, O., Montero, P., & del Gomez-Guillen, M. (2005). Controlled atmosphere as coadjuvant to chilled storage for prevention of melanosis in shrimps (Parapenaeus longirostris). European Food Research and Technology, 220(2), 125–130. https://doi.org/10.1007/s00217-004-1015-1
Martinez-Alvarez, O., Gomez-Guillen, C., & Montero, P. (2008). Effect of different chemical compounds as coadjutants of 4-hexylresorcinol on the appearance of deepwater pink shrimp (Parapenaeus longirostris) during chilled storage. International Journal of Food Science and Technology, 43(11), 2010–2018. https://doi.org/10.1111/j.1365-2621.2008.01810.x
Martinez-Alvarez, O., Lopez-Caballero, M. E., Montero, P., & del Carmen Gomez-Guillen, M. (2020). The effect of different melanosis-inhibiting blends on the quality of frozen deep-water rose shrimp (Parapenaeus longirostris). Food Control, 109, 106889. https://doi.org/10.1016/j.foodcont.2019.106889
Mejlholm, O., Boknaes, N., & Dalgaard, P. (2005). Shelf life and safety aspects of chilled cooked and peeled shrimps (Pandalus borealis) in modified atmosphere packaging. Journal of Applied Microbiology, 99(1), 66–76. https://doi.org/10.1111/j.1365-2672.2005.02582.x
Miraglia, D., Castrica, M., Menchetti, L., Esposto, S., Branciari, R., Ranucci, D., & Servili, M. (2020). Effect of an olive vegetation water phenolic extract on the physico-chemical, microbiological and sensory traits of shrimp (Parapenaeus longirostris) during the Shelf-Life. Foods, 9(11), 1647. https://doi.org/10.3390/foods9111647
Montero, P., Martinez-Alvarez, O., & Gomez-Guillen, M. C. (2004). Effectiveness of onboard application of 4-hexylresorcinol in inhibiting melanosis in shrimp (Parapenaeus longirostris). Journal of Food Science, 69(8), C643–C647. https://doi.org/10.1111/j.1365-2621.2004.tb09913.x
Montero, P., Martinez-Alvarez, O., Zamorano, J. P., Alique, R., & Gomez-Guillen, M. C. (2006). Melanosis inhibition and 4-hexylresorcinol residual levels in deepwater pink shrimp (Parapenaeus longirostris) following various treatments. European Food Research and Technology, 223(1), 16–21. https://doi.org/10.1007/s00217-005-0080-4
Nirmal, N. P., & Benjakul, S. (2011). Use of tea extracts for inhibition of polyphenoloxidase and retardation of quality loss of Pacific white shrimp during iced storage. Lwt-Food Science and Technology, 44(4), 924–932. https://doi.org/10.1016/j.lwt.2010.12.007
Nirmal, N. P., & Benjakul, S. (2012). Effect of green tea extract in combination with ascorbicacid on the retardation of melanosis and quality changes of pacific white shrimp during iced storage. Food and Bioprocess Technology, 5, 2941–2951. https://doi.org/10.1007/s11947-010-0483-5
Noseda, B., Dewulf, J., Goethals, J., Ragaert, P., Van Bree, I., Pauwels, D., & Devlieghere, F. (2010). Effect of food matrix and ph on the volatilization of bases (TVB) in packed north Atlantic gray shrimp (Crangon crangon): volatile bases in MAP fishery products. Journal of Agricultural and Food Chemistry, 58(22), 11864–11869. https://doi.org/10.1021/jf1025218
Noseda, B., Goethals, J., De Smedt, L., Dewulf, J., Samapundo, S., Van Langenhove, H., & Devlieghere, F. (2012). Effect of O-2 - CO2 enriched atmospheres on microbiological growth and volatile metabolite production in packaged cooked peeled gray shrimp (Crangon crangon). International Journal of Food Microbiology, 160(1), 65–75. https://doi.org/10.1016/j.ijfoodmicro.2012.09.018
Odeyemi, A. O., Dabade, S. D., Amin, M., Dewi, F., Waiho, K., & Kasan, A. N. (2021). Microbial diversity and ecology of crustaceans: influencing factors and future perspectives. Current Opinion in Food Science, 39, 140–143. https://doi.org/10.1016/j.cofs.2021.01.001
Okpala, C. O. R. (2014). Investigation of quality attributes of ice-stored Pacific white shrimp (Litopenaeus vannamei) as affected by sequential minimal ozone treatment. Lwt-Food Science and Technology, 57(2), 538–547. https://doi.org/10.1016/j.lwt.2014.02.007
Okpala, C. O. R., Bono, G., Cannizzaro, L., & Jereb, P. (2016). Changes in lipid oxidation and related flesh qualities of white shrimp (Litopenaeus vannamei) during iced storage: effects on the use of increasing ozone exposures. European Journal of Lipid Science and Technology, 118(12), 1942–1951. https://doi.org/10.1002/ejlt.201500347
Oliveira, F. A. d., Neto, O. C., Santos, L. M. R. d., Ferreira, E. H. R., & Rosenthal, A. (2017). Effect of high pressure on fish meat quality − a review. Trends in Food Science & Technology, 66, 1–19. https://doi.org/10.1016/j.tifs.2017.04.014
Orlowska, M., Havet, M., & Le-Bail, A. (2009). Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Research International, 42(7), 879-884. https://doi.org/10.1016/j.foodres.2009.03.015
Pan, C., Chen, S., Hao, S., & Yang, X. (2019). Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: a review. Journal of the Science of Food and Agriculture, 99(14), 6121–6128. https://doi.org/10.1002/jsfa.9905
Parlapani, F. F., Ferrocino, I., Michailidou, S., Argiriou, A., Haroutounian, S. A., Kokokiris, L., & Boziaris, I. S. (2020). Microbiota and volatilome profile of fresh and chill-stored deepwater rose shrimp (Parapenaeus longirostris). Food Research International, 132, 109057. https://doi.org/10.1016/j.foodres.2020.109057
Pati, S., Sarkar, T., Sheikh, H. I., Bharadwaj, K. K., Mohapatra, P. K. A., Chatterji, A., & Nelson, B. R. (2021). Gamma-irradiated chitosan from Carcinoscorpius rotundicauda (Latreille, 1802) improves the shelf life of refrigerated aquatic products. Frontiers in Marine Science, 8, 664961. https://doi.org/10.3389/fmars.2021.664961
Peng, S., Wei, H., Zhan, S., Yang, W., Lou, Q., Deng, S., Yu, X., & Huang, T. (2022). Spoilage mechanism and preservation technologies on the quality of shrimp: an overview. Trends in Food Science & Technology, 129, 233–243. https://doi.org/10.1016/j.tifs.2022.09.024
Pi, X., Yang, Y., Sun, Y., Wang, X., Wan, Y., Fu, G., & Cheng, J. (2021). Food irradiation: a promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2021.1904822
Pineiro, C., Barros-Velazquez, J., & Aubourg, S. P. (2004). Effects of newer slurry ice systems on the quality of aquatic food products: a comparative review versus flake-ice chilling methods. Trends in Food Science & Technology, 15(12), 575–582. https://doi.org/10.1016/j.tifs.2004.09.005
Qian, Y. F., Xie, J., Yang, S. P., Wu, W. H., Xiong, Q., & Gao, Z. L. (2014). In vivo study of spoilage bacteria on polyphenoloxidase activity and melanosis of modified atmosphere packaged Pacific white shrimp. Food Chemistry, 155, 126–131. https://doi.org/10.1016/j.foodchem.2014.01.031
Qiu, J., Wang, W. N., Lj, W., Liu, Y. F., & Wang, A. L. (2011). Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 154(1), 36–41. https://doi.org/10.1016/j.cbpc.2011.02.007
Qiu, X., Wu, Y., Chen, S., Sun, L., Liu, G., & Lin, H. (2020). Oxidative stability and browning development of semi-dried shrimp (Acetes chinensis) with different salt contents and packaging methods stored at refrigerated temperature. Food Science and Technology Research, 26(2), 239–245. https://doi.org/10.3136/fstr.26.239
Ren, X., Yu, Z., Xu, Y., Zhang, Y., Mu, C., Liu, P., & Li, J. (2020). Integrated transcriptomic and metabolomic responses in the hepatopancreas of kuruma shrimp (Marsupenaeus japonicus) under cold stress. Ecotoxicology and Environmental Safety, 206, 111360. https://doi.org/10.1016/j.ecoenv.2020.111360
Rencuzogullari, E., Ila, H. B., Kayraldiz, A., & Topaktas, M. (2001). Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 490(2), 107–112. https://doi.org/10.1016/s1383-5718(00)00142-x
Rusanova, P., Bono, G., Dara, M., Falco, F., Gancitano, V., Lo Brutto, S., Okpala, C. O. R., Nirmal, N. P., Quattrocchi, F., Sardo, G., & Hassoun, A. (2022). Effect of different packaging methods on the free amino acid profiles of the deep-water rose shrimp (Parapenaeus longirostris) during frozen storage. Frontiers in Nutrition, 9, 955216. https://doi.org/10.3389/fnut.2022.955216
Rodrigues, I., Baldini, A., Pires, M., Barros, J. C., Fregonesi, R., de Lima, C. G., & Trindade, M. A. (2021). Gamma ray irradiation: a new strategy to increase the shelf life of salt-reduced hot dog wieners. Lwt-Food Science and Technology, 135, 110265. https://doi.org/10.1016/j.lwt.2020.110265
Sadok, S., Abdelmoulah, A., & El Abed, A. (2004). Combined effect of sepia soaking and temperature on the shelf life of peeled shrimp Penaeus kerathurus. Food Chemistry, 88(1), 115–122. https://doi.org/10.1016/j.foodchem.2003.12.031
Sharifian, S., Shabanpour, B., Taheri, A., & Kordjazi, M. (2019). Effect of phlorotannins on melanosis and quality changes of Pacific white shrimp (Litopenaeus vannamei) during iced storage. Food Chemistry, 298, 124980. https://doi.org/10.1016/j.foodchem.2019.124980
Sharma, S. K., Basu, S., & Gholap, A. S. (2007). Effect of irradiation on the volatile compounds of shrimp (Solenocera choprii). Journal of Food Science and Technology, 44, 267–271.
Shi, J., Lei, Y., Shen, H., Hong, H., Yu, X., Zhu, B., & Luo, Y. (2019). Effect of glazing and rosemary (Rosmarinus officinalis) extract on preservation of mud shrimp (Solenocera melantho) during frozen storage. Food Chemistry, 272, 604–612. https://doi.org/10.1016/j.foodchem.2018.08.056
Shi, J., Zhang, L., Lu, H., Shen, H., Yu, X., & Luo, Y. (2017). Protein and lipid changes of mud shrimp (Solenocera melantho) during frozen storage: chemical properties and their prediction. International Journal of Food Properties, 20, 2043–2056. https://doi.org/10.1080/10942912.2017.1361973
Sivertsvik, M., Jeksrud, W. K., & Rosnes, J. T. (2002). A review of modified atmosphere packaging of fish and fishery products - significance of microbial growth, activities and safety. International Journal of Food Science and Technology, 37(2), 107–127. https://doi.org/10.1046/j.1365-2621.2002.00548.x
Soltanizadeh, N., & Mousavinejad, M. S. (2015). The effects of Aloe vera (Aloe barbadensis) coating on the quality of shrimp during cold storage. Journal of Food Science and Technology-Mysore, 52(10), 6647–6654. https://doi.org/10.1007/s13197-015-1747-x
Sritunyalucksana, K., & Soderhall, K. (2000). The proPO and clotting system in crustaceans. Aquaculture, 191(1−3), 53–69. https://doi.org/10.1016/s0044-8486(00)00411-7
Sun, J., Wang, M., Liu, H., Xie, J., Pan, Y., Xu, C., & Zhao, Y. (2018). Acidic electrolysed water delays browning by destroying conformation of polyphenoloxidase. Journal of the Science of Food and Agriculture, 98(1), 147–153. https://doi.org/10.1002/jsfa.8449
Terwilliger, N. B., & Ryan, M. C. (2006). Functional and phylogenetic analyses of phenoloxidases from brachyuran (Cancer magister) and branchiopod (Artemia franciscana, Triops longicaudatus) crustaceans. Biological Bulletin, 210(1), 38–50. https://doi.org/10.2307/4134535
Torres-Arreola, W., Soto-Valdez, H., Peralta, E., Cardenas-Lopez, J. L., & Ezquerra-Brauer, J. M. (2007). Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of sierra fish (Scomberomorus sierra) muscle during frozen storage. Journal of Agricultural and Food Chemistry, 55(15), 6140–6146. https://doi.org/10.1021/jf070418h
Varlik, C., Bostan, K., & Bingol, E. B. (2014). Effects of treatment with chitosan and antimelanogenesis agents on discoloration of chilled and frozen stored shrimp. Medycyna Weterynaryjna-Veterinary Medicine-Science and Practice, 70(6), 362–368.
Wang, C. Y., Huang, H. W., Hsu, C. P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540. https://doi.org/10.1080/10408398.2012.745479
Wang, J. J., Sun, W. S., Jin, M. T., Liu, H. Q., Zhang, W., Sun, X. H., & Zhao, Y. (2014). Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment. International Journal of Food Microbiology, 179, 50–56. https://doi.org/10.1016/j.ijfoodmicro.2014.03.016
Wang, M., Wang, J. J., Sun, X. H., Pan, Y. J., & Zhao, Y. (2015). Preliminary mechanism of acidic electrolyzed water ice on improving the quality and safety of shrimp. Food Chemistry, 176, 333–341. https://doi.org/10.1016/j.foodchem.2014.12.089
WHO. (1999). High dose irradiation: wholesomeness of food irradiated with doses above 10kGy. WHO. Technical Report Series No. 890.
Xie, J., Sun, X., Pan, Y., & Zhao, Y. (2012). Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp. Food Control, 23(2), 320–324. https://doi.org/10.1016/j.foodcont.2011.07.019
Xiong, C., Liu, C., Liu, W., Pan, W., Ma, F., Chen, W., & Zheng, L. (2016). Noninvasive discrimination and textural properties of E-beam irradiated shrimp. Journal of Food Engineering, 175, 85–92. https://doi.org/10.1016/j.jfoodeng.2015.12.008
Xu, Z., Liu, X., Wang, H., Hong, H., & Luo, Y. (2017). Comparison between the Arrhenius model and the radial basis function neural network (RBFNN) model for predicting quality changes of frozen shrimp (Solenocera melantho). International Journal of Food Properties, 20(11), 2711–2723. https://doi.org/10.1080/10942912.2016.1248292
Xu, Z., Liu, X., Wang, H., Hong, H., Yu, X., & Luo, Y. (2016). Establishment of the Arrhenius model and the radial basis function neural network (RBFNN) model to predict quality of thawed shrimp (Solenocera melantho) stored at different temperatures. Journal of Food Processing and Preservation, 40(5), 882–892. https://doi.org/10.1111/jfpp.12666
Yu, D., Wu, L., Regenstein, J. M., Jiang, Q., Yang, F., Xu, Y., & Xia, W. (2020). Recent advances in quality retention of non-frozen fish and fishery products: a review. Critical Reviews in Food Science and Nutrition, 60(10), 1747–1759. https://doi.org/10.1080/10408398.2019.1596067
Yu, Q., Pan, H., Qian, C., Shao, H., Han, J., Li, Y., & Lou, Y. (2022a). Determination of the optimal electron beam irradiation dose for treating shrimp (Solenocera melantho) by means of physical and chemical properties and bacterial communities. Lwt-Food Science and Technology, 153, 112539. https://doi.org/10.1016/j.lwt.2021.112539
Yu, Q., Pan, H., Qian, C., Shao, H., Han, J., Li, Y., & Lou, Y. (2022b). UPLC/MS-based untargeted metabolomics reveals the changes in muscle metabolism of electron beam irradiated Solenocera melantho during refrigerated storage. Food Chemistry, 367, 130713. https://doi.org/10.1016/j.foodchem.2021.130713
Yu, Q., Pan, H., Qian, C., Shao, H., Li, Y., & Lou, Y. (2022c). Tandem mass tag-based proteomics reveals the effect of electron beam irradiation on metabolism-related differentially expressed proteins in Solenocera melantho postmortem. Journal of Aquatic Food Product Technology, 31(1), 60–70. https://doi.org/10.1080/10498850.2021.2010852
Zeng, Q. Z., Thorarinsdottir, K. A., & Olafsdottir, G. (2005). Quality changes of shrimp (Pandalus borealis) stored under different cooling conditions. Journal of Food Science, 70(7), S459–S466. https://doi.org/10.1111/j.1365-2621.2005.tb11493.x
Zhang, Y., Ren, Y., Bi, Y., Wang, Q., Cheng, K. W., & Chen, F. (2019). Review: seafood allergy and potential application of high hydrostatic pressure to reduce seafood allergenicity. International Journal of Food Engineering, 15(8), 20180392. https://doi.org/10.1515/ijfe-2018-0392
Zhang, Z., Huang, Y., Guo, X., Meng, X., Wu, H., Guo, F., & Li, D. (2020). Effects of chitosan combined with epsilon-polylysine coating on flavor and texture quality of Chinese shrimp during refrigerated storage. Foodmarine shrimp and freshwater shrimp Science & Nutrition, 8(3), 1480–1488. https://doi.org/10.1002/fsn3.1432
Zhu, J., Chen, Y., Jin, L., & Zhu, J. (2020). Quality assessment of frozen Solenocera crassicornis treated with sodium metabisulphite bysoaking or spraying. Journal of Ocean University of China, 19(1), 199–208. https://doi.org/10.1007/s11802-020-4219-5
Zulema Valencia-Perez, A., Soto-Valdez, H., Marina Ezquerra-Brauer, J., Marquez-Rios, E., & Torres-Arreola, W. (2015). Quality changes during frozen storage of blue shrimp (Litopenaeus stylirostris) with antioxidant, alpha-tocopherol, under different conditions. Food Science and Technology, 35(2), 368–374. https://doi.org/10.1590/1678-457x.6666
Funding
This work was supported by National Key R&D Programs of China (2020YFD0900903, 2022YFD2100603) and research on the key technology of fresh agricultural products storage and transportation logistics−the research and industrialization demonstration of the first-line fresh-keeping and cold chain logistics technology of marine-capture shrimp (2019C02086).
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yu, Q., Liu, J., Yang, J. et al. Postharvest Preservation Technologies for Marine-Capture Shrimp: A Review. Food Bioprocess Technol 16, 2343–2358 (2023). https://doi.org/10.1007/s11947-023-03049-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-023-03049-6