Skip to main content

Advertisement

Log in

An Insight into Recent Advancement in Plant- and Algae-Based Functional Ingredients in 3D Food Printing Ink Formulations

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Three-dimensional food printing is an inchoate industry with enormous potential for raising customized food. It offers many advantages as it allows the formulation of complex geometries and permits personalized nutrition to meet special dietary needs without much altering the taste preferences and widens the use of available food sources. A keen surge in this technology has opened the doors to better value addition by supplementing existing processes with 3D food printing and utilizing non-traditional food source for 3D ink formulations. A good understanding of the different properties of ingredients for formulation of 3D ink is necessary to better understand the behavior and properties of the ink system directly affecting the quality of the final printed product. The research and development in the field of ink formulation utilizing non-traditional food ingredients (plant and algae based) is of paramount relevance. In the present article, we review the recent advancements in plant- and algae-based functional ingredients (non-traditional food sources), either added in small amounts or utilized as base material for application in 3D ink formulations. This review spotlights the new ingredients, their physiological function, and impact upon addition on rheological, structural, and printing characteristics of the product. 3D food printing with its application to deliver customized food and personalized nutrition has proven outstanding. Highlighting the advancements in the area of edible ink ingredients and summarizing the existing studies will build the foundation for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This review paper utilized the data which are available in published papers.

References

  • Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., & Mendes, M. A. (2018). Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements, 6(1), 45–58.

    Google Scholar 

  • Arya, S. S., Salve, A. R., & Chauhan, S. (2016). Peanuts as functional food: A review. Journal of Food Science and Technology, 53(1), 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Attarin, S., & Attaran, M. (2020). Food printing: Evolving technologies, challenges, opportunities, and best adoption strategies. Journal of International Technology and Information Management, 29(1), 25–55.

    Article  Google Scholar 

  • Baiano, A. (2020). 3D printed foods: a comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Reviews International, 1–31.

  • Barak, S., & Mudgil, D. (2014). Locust bean gum: Processing, properties and food applications—a review. International Journal of Biological Macromolecules, 66, 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Behera, S. S., & Ray, R. C. (2016). Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. International Journal of Biological Macromolecules, 92, 942–956.

    Article  CAS  PubMed  Google Scholar 

  • Câmara, C. R., Urrea, C. A., & Schlegel, V. (2013). Pinto beans (Phaseolus vulgaris L.) as a functional food: implications on human health. Agriculture, 3(1), 90–111.

  • Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Sun, H., Mu, T., Blecker, C., Richel, A., Richard, G., ... & Goffin, D. (2022). Effect of temperature on rheological, structural, and textural properties of soy protein isolate pastes for 3D food printing. Journal of Food Engineering, 110917.

  • Chen, Y., Zhang, M., & Phuhongsung, P. (2021). 3D printing of protein-based composite fruit and vegetable gel system. LWT, 141, 110978.

    Article  CAS  Google Scholar 

  • Cheng-Rong, T. S. A. I., & Yung-Kai, L. I. N. (2022). Artificial steak: A 3D printable hydrogel composed of egg albumen, pea protein, gellan gum, sodium alginate and rice mill by-products. Future Foods, 5, 100121.

    Article  Google Scholar 

  • Chow, C. Y., Thybo, C. D., Sager, V. F., Riantiningtyas, R. R., Bredie, W. L., & Ahrné, L. (2021). Printability, stability and sensory properties of protein-enriched 3D-printed lemon mousse for personalised in-between meals. Food Hydrocolloids, 120, 106943.

    Article  CAS  Google Scholar 

  • Chua, C. K., Tan, C., Li, L., & Wong, G. (2018). Enhancing 3D printability of pureed food by addition of hydrocolloids. Additive Manufacturing (Pro-AM 2018), 662, 666.

  • Chuanxing, F., Qi, W., Hui, L., Quancheng, Z., & Wang, M. (2018). Effects of pea protein on the properties of potato starch-based 3D printing materials. International Journal of Food Engineering, 14(3).

  • Ciurzyńska, A., Szerszeń, J., & Lenart, A. (2016). Pectin—a functional component of diet. Int. J. Res. Stud. Sci. Eng. Technol, 3, 20–27.

    Google Scholar 

  • Consumer Protection Act. (1986). Ministry of Consumer Affairs, Food & Public Distribution, Government of India.

  • Dankar, I., Haddarah, A., Omar, F. E., Sepulcre, F., & Pujolà, M. (2018a). 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology, 75, 231–242.

    Article  CAS  Google Scholar 

  • Dankar, I., Pujolà, M., El Omar, F., Sepulcre, F., & Haddarah, A. (2018b). Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology, 11(11), 2021–2031.

    Article  CAS  Google Scholar 

  • Derossi, A., Caporizzi, R., Oral, M. O., & Severini, C. (2020a). Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products. Innovative Food Science & Emerging Technologies, 66, 102531.

    Article  CAS  Google Scholar 

  • Derossi, A., Paolillo, M., Caporizzi, R., & Severini, C. (2020b). Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 275, 109865.

  • DFH Team. (2019). The surprising protein composition of mushrooms.

  • Di Cairano, M., Caruso, M. C., Galgano, F., Favati, F., Ekere, N., & Tchuenbou-Magaia, F. (2021). Effect of sucrose replacement and resistant starch addition on textural properties of gluten-free doughs and biscuits. European Food Research and Technology, 247(3), 707–718.

    Article  Google Scholar 

  • Dick, A., Bhandari, B., & Prakash, S. (2021). Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients. Future Foods, 3, 100006.

    Article  CAS  Google Scholar 

  • Dobreva, V., Hadjikinova, M., Slavov, A., Hadjikinov, D., Dobrev, G., & Zhekova, B. (2013). Functional properties of maltitol. Agricultural Science and Technology, 5(2), 168–172.

    Google Scholar 

  • Ebrahim, T. Y. (2016). 3D printing: Digital infringement & digital regulation. Nw. J. Tech. & Intell. Prop., 14, 37.

    Google Scholar 

  • Fahmy, A. R., Amann, L. S., Dunkel, A., Frank, O., Dawid, C., Hofmann, T., ... & Jekle, M. (2021). Sensory design in food 3D printing–structuring, texture modulation, taste localization, and thermal stabilization. Innovative Food Science & Emerging Technologies, 72, 102743.

  • Fatoki, T. H., Sanni, D. M., Momodu, D. U., Ugboko, H. U., Adeseko, C. J., & Faleye, B. C. (2018). Evaluation of empirical functions and fate of isomaltose. J Appl Life Sci Int, 16, 1–10.

    Article  Google Scholar 

  • FDA (2022) https://www.fda.gov/media/157973/download

  • Feng, C., Zhang, M., Bhandari, B., & Ye, Y. (2020). Use of potato processing by-product: Effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. Lwt, 125, 109265.

    Article  CAS  Google Scholar 

  • Feng, C., Zhang, M., Bhandari, B., Wang, Y., & Wang, B. (2021). Improvement of 3D printing properties of rose-sodium alginate heterogeneous gel by adjusting rose material. Journal of Food Process Engineering, 44(1), e13583.

    Article  CAS  Google Scholar 

  • Feng, T., Fan, C., Wang, X., Wang, X., Xia, S., & Huang, Q. (2022). Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocolloids, 124, 107265.

    Article  CAS  Google Scholar 

  • FoodJet. (2022). Available at https://www.foodjet.com/our-solutions/cavity-depositing

  • FSS Act. (2006). Ministry of Health & Family Welfare, Government of India.

  • García-Segovia, P., García-Alcaraz, V., Balasch-Parisi, S., & Martínez-Monzó, J. (2020). 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies, 64, 102343.

    Article  Google Scholar 

  • Godoi, F. C., Bhandari, B. R., Prakash, S., & Zhang, M. (2019). An introduction to the principles of 3D food printing. In Fundamentals of 3D food printing and applications (pp. 1–18). Academic Press.

  • Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44–54.

    Article  Google Scholar 

  • González, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodríguez, R., ... & Belmares, R. (2020). Edible mushrooms as a novel protein source for functional foods. Food & Function, 11(9), 7400–7414.

  • Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., ... & Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250–7256.

  • Hamilton, C. A., Alici, G., & in het Panhuis, M. (2018). 3D printing vegemite and marmite: Redefining “breadboards.” Journal of Food Engineering, 220, 83–88.

    Article  Google Scholar 

  • Hao, L., Mellor, S., Seaman, O., Henderson, J., Sewell, N., & Sloan, M. (2010). Material characterisation and process development for chocolate additive layer manufacturing. Virtual and Physical Prototyping, 5(2), 57–64.

    Article  Google Scholar 

  • He, C., Zhang, M., & Guo, C. (2020). 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innovative Food Science & Emerging Technologies, 59, 102250.

    Article  CAS  Google Scholar 

  • Holland, S., Foster, T., & Tuck, C. (2019). Creation of food structures through binder jetting. In Fundamentals of 3D Food Printing and Applications (pp. 257–288). Academic Press.

  • Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12–19.

    Article  CAS  Google Scholar 

  • Huang, J. H. R., Wu, C. Y., Chan, H. M., & Ciou, J. Y. (2022). Printing parameters of sugar/pectin jelly candy and application by using a decision tree in a hot-extrusion 3D printing system. Sustainability, 14(18), 11618.

    Article  CAS  Google Scholar 

  • Huang, M. S., Zhang, M., Bhandari, B., & Liu, Y. (2020). Improving the three-dimensional printability of taro paste by the addition of additives. Journal of Food Process Engineering, 43(5), e13090.

    Article  CAS  Google Scholar 

  • In, J., Jeong, H., Song, S., & Min, S. C. (2021). Determination of material requirements for 3D gel food printing using a fused deposition modeling 3D printer. Foods, 10(10), 2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IUFost. (2021). Available at https://iufost.org/sites/default/files/IUFoST%20SIB%203D%20Printing.12.21.pdf

  • Jagadiswaran, B., Alagarasan, V., Palanivelu, P., Theagarajan, R., Moses, J. A., & Anandharamakrishnan, C. (2021). Valorization of food industry waste and by-products using 3D printing: A study on the development of value-added functional cookies. Future Foods, 4, 100036.

    Article  CAS  Google Scholar 

  • Jia, F., Wang, X., Mustafee, N., & Hao, L. (2016). Investigating the feasibility of supply chain-centric business models in 3D chocolate printing: A simulation study. Technological Forecasting and Social Change, 102, 202–213.

    Article  Google Scholar 

  • Jonkers, N., van Dommelen, J. A. W., & Geers, M. G. D. (2022). An anisotropic elasto-viscoplastic-damage model for selective laser sintered food. Engineering Fracture Mechanics, 266, 108368.

    Article  Google Scholar 

  • Kamlow, M. A., Vadodaria, S., Gholamipour-Shirazi, A., Spyropoulos, F., & Mills, T. (2021). 3D printing of edible hydrogels containing thiamine and their comparison to cast gels. Food Hydrocolloids, 116, 106550.

    Article  CAS  Google Scholar 

  • Keerthana, K., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering, 287, 110116.

    Article  CAS  Google Scholar 

  • Kewuyemi, Y. O., Kesa, H., & Adebo, O. A. (2021). Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Critical Reviews in Food Science and Nutrition, 1–38.

  • Kim, H. W., Lee, I. J., Park, S. M., Lee, J. H., Nguyen, M. H., & Park, H. J. (2019). Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough. Lwt, 101, 69–75.

    Article  CAS  Google Scholar 

  • Kim, H. W., Lee, J. H., Park, S. M., Lee, M. H., Lee, I. W., Doh, H. S., & Park, H. J. (2018). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing. Journal of Food Science, 83(12), 2923–2932.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Kim, H. W., & Park, H. J. (2021). Effect of pea protein isolate incorporation on 3D printing performance and tailing effect of banana paste. LWT, 150, 111916.

    Article  CAS  Google Scholar 

  • Kuo, C., Qin, H., Acuña, D. F., Cheng, Y., Jiang, X., & Shi, X. (2019). Printability of hydrogel composites using extrusion-based 3D printing and post-processing with calcium chloride. J. Food Sci. Nutr, 5, 051.

    Google Scholar 

  • Kuo, R. F., Lin, Y. S., Yang, T. H., & Nguyen, A. T. (2022). 3D printing: limitations, safety, and regulatory considerations for oral health science. In 3D Printing in Oral Health Science (pp. 269–291). Springer, Cham.

  • Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. Journal of Food Engineering, 215, 13–22.

    Article  CAS  Google Scholar 

  • Le Tohic, C., O'Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., ... & Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56–64.

  • Le-Bail, A., Maniglia, B. C., & Le-Bail, P. (2020a). Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Current Opinion in Food Science, 35, 54–64.

    Article  Google Scholar 

  • Le-Bail, A., Maniglia, B. C., & Le-Bail, P. (2020b). 3D printing of foods: recent developments, future perspectives and challenges. Current Opinion in Food Science.

  • Lee, J. (2021). A 3D food printing process for the new normal era: A review. Processes, 9(9), 1495.

    Article  CAS  Google Scholar 

  • Li, P., Mellor, S., Griffin, J., Waelde, C., Hao, L., & Everson, R. (2014). Intellectual property and 3D printing: A case study on 3D chocolate printing. Journal of Intellectual Property Law & Practice, 9(4), 322–332.

    Article  Google Scholar 

  • Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Norén, N., & Lipson, H. (2010, September). Multi-material food printing with complex internal structure suitable for conventional post-processing. In 2010 International Solid Freeform Fabrication Symposium. University of Texas at Austin.

  • Liu, L., Meng, Y., Dai, X., Chen, K., & Zhu, Y. (2019a). 3D printing complex egg white protein objects: Properties and optimization. Food and Bioprocess Technology, 12(2), 267–279.

    Article  CAS  Google Scholar 

  • Liu, Y., Tang, T., Duan, S., Qin, Z., Li, C., Zhang, Z., ... & Wu, W. (2020). Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste. Lwt, 127, 109360.

  • Liu, Y., Zhang, W., Wang, K., Bao, Y., Regenstein, J. M., & Zhou, P. (2019b). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance. Food and Bioprocess Technology, 12(12), 1967–1979.

    Article  CAS  Google Scholar 

  • Liu, Z., & Zhang, M. (2019c). 3D food printing technologies and factors affecting printing precision. In Fundamentals of 3D Food Printing and Applications (pp. 19–40). Academic Press.

  • Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83–94.

    Article  CAS  Google Scholar 

  • López Galdeano, J. A. (2014). 3D printing food: The sustainable future (Bachelor's thesis, Universitat Politècnica de Catalunya).

  • Lu, Z. X., He, J. F., Zhang, Y. C., & Bing, D. J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593–2605.

    Article  CAS  PubMed  Google Scholar 

  • Mantihal, S., Kobun, R., & Lee, B. B. (2020). 3D food printing of as the new way of preparing food: A review. International Journal of Gastronomy and Food Science, 22, 100260.

    Article  Google Scholar 

  • Mantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Science & Emerging Technologies, 44, 21–29.

    Article  Google Scholar 

  • Mehta, A., Bapna, A., Joshi, P., Arora, T., & Raghavan, G. (2022). Maltitol based sugar-free chocolates may not promote dental caries: an open-label clinical study. F1000Research, 11(417), 417.

  • Nachal, N., Moses, J. A., Karthik, P., & Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 11(3), 123–141.

    Article  CAS  Google Scholar 

  • Noort, M., Van Bommel, K., & Renzetti, S. (2017). 3D-printed cereal foods. Cereal Foods World, 62(6), 272–277.

    Article  CAS  Google Scholar 

  • Nordberg, A., & Schovsbo, J. (2016). EU Design Law and 3D Printing: finding the right balance in a new e-ecosystem. 3D Printing, Intellectual Property and Innovation–Insights from Law and Technology (Wolters Kluwer, 2017 Forthcoming), University of Copenhagen Faculty of Law Research Paper, (2017–30).

  • Oliveira, S. M., Fasolin, L. H., Vicente, A. A., Fuciños, P., & Pastrana, L. M. (2020). Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 109, 106120.

    Article  CAS  Google Scholar 

  • Oyinloye, T. M., & Yoon, W. B. (2021). Stability of 3D printing using a mixture of pea protein and alginate: Precision and application of additive layer manufacturing simulation approach for stress distribution. Journal of Food Engineering, 288, 110127.

    Article  CAS  Google Scholar 

  • Pant, A., Lee, A. Y., Karyappa, R., Lee, C. P., An, J., Hashimoto, M., ... & Zhang, Y. (2021). 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids, 114, 106546.

  • Phuhongsung, P., Zhang, M., & Bhandari, B. (2020a). 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Research International, 137, 109605.

    Article  CAS  PubMed  Google Scholar 

  • Phuhongsung, P., Zhang, M., & Devahastin, S. (2020b). Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics. LWT, 122, 109019.

    Article  CAS  Google Scholar 

  • Pitayachaval, P., Sanklong, N., & Thongrak, A. (2018). A review of 3D food printing technology. In MATEC Web of Conferences (Vol. 213, p. 01012). EDP Sciences.

  • Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., & Mirade, P. S. (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science & Technology, 86, 188–198.

    Article  CAS  Google Scholar 

  • Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., & Mirade, P. S. (2022). 3D food printing: genesis, trends and prospects. In Future Foods (pp. 627–644). Academic Press.

  • Qin, Y., Jiang, J., Zhao, L., Zhang, J., & Wang, F. (2018). Applications of alginate as a functional food ingredient. In Biopolymers for Food Design (pp. 409–429). Academic Press.

  • Rahman, J. M. H., Shiblee, M. N. I., Ahmed, K., Khosla, A., Kawakami, M., & Furukawa, H. (2020). Rheological and mechanical properties of edible gel materials for 3D food printing technology. Heliyon, 6(12), e05859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasouli Pirouzian, H. (2022). Using maltitol and xylitol as alternative bulking agents in milk chocolate: modelling approach. Journal of Food Science and Technology, 59, 2492-2500.

  • Ricci, I., Derossi, A., & Severini, C. (2019). 3D printed food from fruits and vegetables. In Fundamentals of 3D Food Printing and Applications (pp. 117–149). Academic Press.

  • Severini, C., & Derossi, A. (2016). Could the 3D printing technology be a useful strategy to obtain customized nutrition. Journal of Clinical Gastroenterology, 50(1), S175–S178.

    Article  PubMed  Google Scholar 

  • Severini, C., Derossi, A., & Azzollini, D. (2016). Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innovative Food Science & Emerging Technologies, 38, 281–291.

    Article  Google Scholar 

  • Shahbazi, M., Jäger, H., Ettelaie, R., & Chen, J. (2021). Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks. Food Hydrocolloids, 120, 106967.

  • Shi, Z., Blecker, C., Richel, A., Wei, Z., Chen, J., Ren, G., ... & Haubruge, E. (2022). Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. LWT, 155, 112906.

  • Sun, J., Peng, Z., Yan, L., Fuh, J. Y. H., & Hong, G. S. (2015a). 3D food printing an innovative way of mass customization in food fabrication. International Journal of Bioprinting, 1(1).

  • Sun, J., Peng, Z., Zhou, W., Fuh, J. Y., Hong, G. S., & Chiu, A. (2015b). A review on 3D printing for customized food fabrication. Procedia Manufacturing, 1, 308–319.

    Article  Google Scholar 

  • Sun, J., Zhou, W., Huang, D., Fuh, J. Y., & Hong, G. S. (2015c). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615.

    Article  CAS  Google Scholar 

  • Sun, J., Zhou, W., Yan, L., Huang, D., & Lin, L. Y. (2018). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 220, 1–11.

    Article  Google Scholar 

  • Sun, L., He, C., Nair, L., Yeung, J., & Egwuagu, C. E. (2015d). Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine, 75(2), 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, J. J. Y., Lee, C. P., & Hashimoto, M. (2020). Preheating of gelatin improves its printability with transglutaminase in direct ink writing 3D printing. International Journal of Bioprinting, 6(4).

  • Teng, X., Zhang, M., & Bhandri, B. (2019). 3D printing of Cordyceps flower powder. Journal of Food Process Engineering, 42(6), e13179.

    Article  Google Scholar 

  • The Drugs and Cosmetics Act. (1940). Ministry of Health & Family Welfare, Government of India.

  • The Sale of Goods Act. (1930). Ministry of Law and Justice, Government of India.

  • UL, Solutions. (2015). 3D Printing & Additive Manufacturing Equipment Compliance Guidline available at https://code-authorities.ul.com/wp-content/themes/countries/downloads/am/3D-PRINTING-EQUIP-SAFETY-GUIDELINE_EDITION2.pdf

  • Uribe-Wandurraga, Z. N., Igual, M., Reino-Moyón, J., García-Segovia, P., & Martínez-Monzó, J. (2021). Effect of microalgae (Arthrospira platensis and Chlorella vulgaris) addition on 3D printed cookies. Food Biophysics, 16(1), 27–39.

    Article  Google Scholar 

  • Uribe-Wandurraga, Z. N., Zhang, L., Noort, M. W., Schutyser, M. A., García-Segovia, P., & Martínez-Monzó, J. (2020). Printability and physicochemical properties of microalgae-enriched 3D-printed snacks. Food and Bioprocess Technology, 13(11), 2029–2042.

    Article  Google Scholar 

  • Vancauwenberghe, V., Katalagarianakis, L., Wang, Z., Meerts, M., Hertog, M., Verboven, P., ... & Nicolaï, B. (2017). Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science & Emerging Technologies, 42, 138–150.

  • Vancauwenberghe, V., Mbong, V. B. M., Vanstreels, E., Verboven, P., Lammertyn, J., & Nicolai, B. (2019). 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. Journal of Food Engineering, 263, 454–464.

    Article  CAS  Google Scholar 

  • Varvara, R. A., Szabo, K., & Vodnar, D. C. (2021). 3D food printing: Principles of obtaining digitally-designed nourishment. Nutrients, 13(10), 3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Hasseln, K. W., Von Hasseln, E. M., & Williams, D. X. (2014). U.S. Patent Application No. 14/151,672.

  • Voon, S. L., An, J., Wong, G., Zhang, Y., & Chua, C. K. (2019). 3D food printing: A categorised review of inks and their development. Virtual and Physical Prototyping, 14(3), 203–218.

    Article  Google Scholar 

  • Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101–108.

    Article  CAS  Google Scholar 

  • Xiao, J. Y., Zhan, M. Q., Cong, R. H., Hua, M. H., Ma, F. L., & Wan, Y. (2019). Study on the 3D printing formability of chocolate with Chinese medicine functional factor. Science and Technology of Food Industry, 40(5), 77–82.

    Google Scholar 

  • Yang, F., Zhang, M., & Bhandari, B. (2017). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14), 3145–3153.

    Article  PubMed  Google Scholar 

  • Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018a). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. Lwt, 87, 67–76.

    Article  CAS  Google Scholar 

  • Yang, F., Zhang, M., Prakash, S., & Liu, Y. (2018b). Physical properties of 3D printed baking dough as affected by different compositions. Innovative Food Science & Emerging Technologies, 49, 202–210.

    Article  Google Scholar 

  • YanPu, C. (2016). A novel 3D printing color candy technology by micro droplet-on-demand deposition. International Journal of Simulation. Systems, Science and Technology, 17(19).

  • Yu, N., Gong, H., Yuan, H., Bao, Y., & Wang, W. (2022a). Effects of calcium chloride as a salt substitute on physicochemical and 3D printing properties of silver carp surimi gels. CyTA-Journal of Food, 20(1), 1–12.

    Article  CAS  Google Scholar 

  • Yu, W., Wang, Z., Pan, Y., Jiang, P., Pan, J., Yu, C., & Dong, X. (2022b). Effect of κ-carrageenan on quality improvement of 3D printed Hypophthalmichthys molitrix-sea cucumber compound surimi product. Lwt, 154, 112279.

    Article  CAS  Google Scholar 

  • Zeltmann, S. E., Gupta, N., Tsoutsos, N. G., Maniatakos, M., Rajendran, J., & Karri, R. (2016). Manufacturing and security challenges in 3D printing. JOM Journal of the Minerals Metals and Materials Society, 68(7), 1872–1881.

    Article  Google Scholar 

  • Zhang, J. Y., Pandya, J. K., McClements, D. J., Lu, J., & Kinchla, A. J. (2021a). Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition, 1–18.

  • Zhang, L., Noort, M., & van Bommel, K. (2021b). Towards the creation of personalized bakery products using 3D food printing. Advances in Food and Nutrition Research.

  • Zhang, T., Xu, X., Li, Z., Wang, Y., Xue, Y., & Xue, C. (2018). Interactions and phase behaviors in mixed solutions of κ-carrageenan and myofibrillar protein extracted from Alaska pollock surimi. Food Research International, 105, 821–827.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Zhang, M., Chitrakar, B., & Adhikari, B. (2021a). Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures. Critical Reviews in Food Science and Nutrition, 61(21), 3489–3503.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z., Wang, Q., Yan, B., Gao, W., Jiao, X., Huang, J., ... & Fan, D. (2021b). Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovative Food Science & Emerging Technologies, 67, 102546.

  • Zheng, L., Ren, A., Liu, R., Xing, Y., Yu, X., & Jiang, H. (2022). Effect of sodium chloride solution on quality of 3D-printed samples molded using wheat starch gel. Food Hydrocolloids, 123, 107197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rishabh Thakur wrote the original draft, and collected information and resources. B.K. Yadav performed conceptualization, editing, and project administration. Neha Goyal prepared the figures and helped in writing. All the authors reviewed the manuscript.

Corresponding author

Correspondence to B. K. Yadav.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R., Yadav, B.K. & Goyal, N. An Insight into Recent Advancement in Plant- and Algae-Based Functional Ingredients in 3D Food Printing Ink Formulations. Food Bioprocess Technol 16, 1919–1942 (2023). https://doi.org/10.1007/s11947-023-03040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03040-1

Keywords

Navigation