Skip to main content
Log in

Mathematical Modeling for Thermal Lethality of Maize Weevil (Sitophilus zeamais) Adults

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The deterioration of dried grains due to the presence of pest insects generates food waste and economic losses. The maize weevil (Sitophilus zeamais) is one of the main pests of stored grains. Traditional disinfestation methods are fumigation; however, there is a global claim to eliminate this chemical process. The present study developed an experimental method for estimating S. zeamais adults' thermal death using hot air (46–62 °C) and proposed models for predicting the survival curves of the insects. Fermi, Gompertz, and Weibull kinetics models described the experimental data accurately. Around 50 °C, an increase of 4 °C reduced by 60% the time to kill all insects. Temperatures above 60 °C killed the insects within a few minutes (< 8 min). The proposed predictive model was experimentally validated and resulted in good predictions of the thermal death of S. zeamais adults. The model can generate effective thermal treatment protocols for controlling S. zeamais in grains. In addition, the experimental procedure and mathematical approach have the potential to be extended to other pest insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

a :

Equation parameter

b :

Equation parameter

C :

Equation parameter dimensionless

E :

Equation parameter dimensionless

FER:

Fermi model

GOM:

Adapted Gompertz model

HBS:

Heating block system

k G :

Specific death rate (Gompertz model) min1

k F :

Specific death rate (Fermi model) min1

k max :

Maximum specific death rate min1

n :

Number of experimental points unity

p :

Number of parameters of the model unity

R 2 :

Coefficient of determination dimensionless

\({R}_{adj}^{2}\) :

Adjusted coefficient of determination dimensionless

RF:

Radiofrequency

RH:

Relative humidity %

rmse :

Root mean square error

S(t) :

Survival ratio (of the insect population) dimensionless

T :

Temperature °C

t :

Time of process min

t L :

Time to reduce the initial insect population to half min

t M :

Time at which k is maximum min

WBL:

Weibull model

α:

Parameter of equation dimensionless

β:

Parameter of equation min

ε:

Parameter of interests

υ:

Value of parameter of interests

pred :

Predicted value

obs :

Observed value

References

  • Agrafioti, P., Athanassiou, C. G., & Nayak, M. K. (2019). Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. Journal of Stored Products Research, 82, 40–47. https://doi.org/10.1016/j.jspr.2019.02.004

    Article  Google Scholar 

  • Ahmady, A., Mousa, M. A. A., & Zaitoun, A. A. (2016). Effect of microwave radiation on Tribolium confusum Jaquelin du Val (Coleoptera: Tenebrionidae) and Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchidae). Journal of Entomology and Zoology Studies, 4(4), 1257–1263.

  • Ben-Ialli, A., Méot, J. M., Bohuon, P., & Collignan, A. (2009). Survival kinetics of Ephestia kuehniella eggs during 46–75 °C heat treatment. Journal of Stored Products Research, 45, 206–211. https://doi.org/10.1016/j.jspr.2009.03.001

    Article  Google Scholar 

  • Ben-lalli, A., Bohuon, P., Collignan, A., & Meót, J. M. (2013). Modeling heat transfer for disinfestation and control of insects (larvae and eggs) in date fruits. Journal of Food Engineering, 116(2), 505–514. https://doi.org/10.1016/j.jfoodeng.2012.11.031

    Article  Google Scholar 

  • Ben-Lalli, A., Méot, J. M., Collignan, A., & Bohuon, P. (2011). Modelling heat-disinfestation of dried fruits on “biological model” larvae Ephestia kuehniella (Zeller). Food Research International, 44(1), 156–166. https://doi.org/10.1016/j.foodres.2010.10.047

    Article  Google Scholar 

  • Bingham, A. C., Subramanyam, B., Mahroof, R., & Alavi, S. (2017). Development and validation of a model for predicting survival of young larvae of Tribolium castaneum exposed to elevated temperatures during heat treatment of grain-processing facilities. Journal of Stored Products Research, 72, 143–152. https://doi.org/10.1016/j.jspr.2017.04.008

    Article  Google Scholar 

  • Buchanan, R. L. (1993). Predictive food microbiology. Trends in Food Science & Technology, 4(1), 6–11. https://doi.org/10.1016/S0924-2244(05)80004-4

    Article  Google Scholar 

  • Burin, G. R. M., Santos, T. C., Battisti, M., Campos, A. M., Ferreira, S. R. S., & Carciofi, B. A. M. (2022). Transport properties of hydrophilic compounds in PLGA microspheres. Research, Society and Development, 11, e398111638335. https://doi.org/10.33448/rsd-v11i16.38335

  • Chakraverty, A., Mujumdar, A. S., Raghavan, G. S. V., & Ramaswamy, H. S. (2003). Handbook of Postharvest Technology. In Handbook of Postharvest Technology (Cereals, Fruit, Vegetables, Tea, and Spices). Marcel Dekker.

  • Chiappini, E., Molinari, P., & Cravedi, P. (2009). Mortality of Tribolium confusum J. du Val (Coleoptera: Tenebrionidae) in controlled atmospheres at different oxygen percentages. Journal of Stored Products Research, 45(1), 10–13. https://doi.org/10.1016/j.jspr.2008.06.004

  • Codex Alimentarius International Food Standards. Standard for Maize (Corn), CFX 153 - 1985. Available in: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/

  • Conyers, S. T., & Bell, C. H. (2007). A novel use of modified atmospheres: Storage insect population control. Journal of Stored Products Research, 43(4), 367–374. https://doi.org/10.1016/j.jspr.2006.09.003

    Article  CAS  Google Scholar 

  • Da Silva, N. B., Longhi, D. A., Martins, W. F., Laurindo, J. B., Aragão, G. M. F., & Carciofi, B. A. M. (2017). Modeling the growth of Lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. International Journal of Food Microbiology, 240, 97–101. https://doi.org/10.1016/j.ijfoodmicro.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  • Daglish, G. J., & Nayak, M. K. (2018). Prevalence of resistance to deltamethrin in Rhyzopertha dominica (F.) in eastern Australia. Journal of Stored Products Research, 78, 45–49. https://doi.org/10.1016/j.jspr.2018.06.003

    Article  Google Scholar 

  • Das, I., Kumar, G., & Shah, N. G. (2013). Microwave heating as an alternative quarantine method for disinfestation of stored food grains. International Journal of Food Science, 1–13. https://doi.org/10.1155/2013/926468

  • Devi, S. R., Thomas, A., Rebijith, K. B., & Ramamurthy, V. V. (2017). Biology, morphology and molecular characterization of Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research, 73, 135–141. https://doi.org/10.1016/j.jspr.2017.08.004

    Article  Google Scholar 

  • FAO, F. and A. O. of the U. N. (1994). Grain storage techniques: Evolution and trends in developing coutries (D. L. Proctor & F. Consultant (eds.)). FAO Agricultural Services Bulletin.

  • Feroz, A., Shakoori, F. R., Riaz, T., & Shakoori, A. R. (2020). Development of resistance in stored grain pest, Trogoderma granarium (Everts) against deltamethrin and its effective control by synergistic toxicity of bifenthrin and chlorpyrifos. Journal of Stored Products Research, 88, 101673. https://doi.org/10.1016/j.jspr.2020.101673

  • Fields, P. G. (1992). The Control of Stored-Product Insects and Mites With Extreme Temperatures*. Journal of Stored Products Research, 28(2), 89–118.

    Article  Google Scholar 

  • Fleurat-Lessard, F., & Dupuis, S. A. (2010). Comparative analysis of upper thermal tolerance and CO2 production rate during heat shock in two different European strains of Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research, 46(1), 20–27. https://doi.org/10.1016/j.jspr.2009.07.004

    Article  CAS  Google Scholar 

  • Gallo, D. (2002). Entomologia agrícola. (p. 920). Piracicaba: FEALQ, Biblioteca de Ciências Agrárias Luiz de Queiroz 10). ISBN 85-7133-011-5.

  • García-Lara, S., García-Jaimes, E., & Bergvinson, D. J. (2019). Mapping of maize storage losses due to insect pests in central Mexico. Journal of Stored Products Research, 84, 101529. https://doi.org/10.1016/j.jspr.2019.101529

  • Gazit, Y., Rossler, Y., Wang, S., Tang, J., & Lurie, S. (2004). Thermal Death Kinetics of Egg and Third Instar Mediterranean Fruit Fly (Diptera: Tephritidae). Journal of Economic Entomology, 97(5), 1540–1546. https://doi.org/10.1603/0022-0493-97.5.1540

    Article  CAS  PubMed  Google Scholar 

  • Golob, P., Farrell, G., & Orchard, J. E. (2002). Crop Post-Harvest : Science and Technology, volume 1: Principles and practice (Vol. 1, p. 568). Blackwell Science.

  • Gonzalez-Morales, M. A., & Romero, A. (2019). Effect of Synergists on Deltamethrin Resistance in the Common Bed Bug (Hemiptera: Cimicidae). Journal of Economic Entomology, 112(2), 786–791. https://doi.org/10.1093/jee/toy376

    Article  CAS  PubMed  Google Scholar 

  • Halverson, S. L., Burkholder, W. E., Bigelow, T. S., Nordheim, E. V., & Misenheimer, M. E. (1996). High-Power Microwave Radiation as an Alternative Insect Control Method for Stored Products. Journal of Economic Entomology, 89(6), 1638–1648.

    Article  Google Scholar 

  • Hill, D. S. (2002). Pests of Stored Foodstuffs and their Control. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48131-6

    Article  Google Scholar 

  • Hou, L., Liu, Q., & Wang, S. (2019a). Efficiency of industrial-scale radio frequency treatments to control Rhyzopertha dominica (Fabricius) in rough, brown, and milled rice. Biosystems Engineering, 186, 246–258. https://doi.org/10.1016/j.biosystemseng.2019.08.009

    Article  Google Scholar 

  • Hou, L., Wu, Y., & Wang, S. (2019b). Thermal death kinetics of Cryptolestes pusillus (Schonherr), Rhyzopertha dominica (Fabricius), and Tribolium confusum (Jacquelin du Val) Using a Heating Block System. InSects, 10(5), 1–13. https://doi.org/10.3390/insects10050119

    Article  Google Scholar 

  • Huang, Z., Chen, L., & Wang, S. (2015). Computer simulation of radio frequency selective heating of insects in soybeans. International Journal of Heat and Mass Transfer, 90, 406–417. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.071

    Article  CAS  Google Scholar 

  • Johnson, J. A., Valero, K. A., Wang, S., & Tang, J. (2004). Thermal Death Kinetics of Red Flour Beetle (Coleoptera: Tenebrionidae). Journal of Economic Entomology, 97(6), 1868–1873. https://doi.org/10.1093/jee/97.6.1868

  • Jones, V. M., & Waddell, B. C. (1997). Hot-Water Effect on Mortality of Cydia pomonella (Lepidoptera: Tortricidae). Journal of Economic Entomology, 90(5), 1357–1359. https://doi.org/10.1093/jee/90.5.1357

    Article  Google Scholar 

  • Khan, H. A. A. (2019). Realized heritability of resistance to deltamethrin in a field strain of Musca domestica Linnaeus (Diptera: Muscidae). Chemosphere, 215, 678–680. https://doi.org/10.1016/j.chemosphere.2018.09.131

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Mohapatra, D., Kotwaliwale, N., & Singh, K. K. (2017). Vacuum Hermetic Fumigation: A review. Journal of Stored Products Research, 71, 47–56. https://doi.org/10.1016/j.jspr.2017.01.002

    Article  Google Scholar 

  • Lay-Yee, M., Ball, S., Forbes, S. K., & Woolf, A. B. (1997). Hot-water treatment for insect disinfestation and reduction of chilling injury of “Fuyu” persimmon. Postharvest Biology and Technology, 10(1), 81–87. https://doi.org/10.1016/S0925-5214(97)87277-8

    Article  Google Scholar 

  • Lazzari, S. M. N., & Lazzari, F. A. (2012). Insect Pests in Stored Grain. In A. R. Panizzi & J. R. P. Parra (Eds.), Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press.

  • Li, W., Wang, K., Chen, L., Johnson, J. A., & Wang, S. (2015). Tolerance of Sitophilus zeamais (Coleoptera: Curculionidae) to heated controlled atmosphere treatments. Journal of Stored Products Research, 62, 52–57. https://doi.org/10.1016/j.jspr.2015.04.001

    Article  Google Scholar 

  • Ling, B., Cheng, T., & Wang, S. (2019). Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 0(0), 1–21. https://doi.org/10.1080/10408398.2019.1651690

  • Liu, Q., Qu, Y., Liu, J., & Wang, S. (2021). Effects of radio frequency heating on mortality of lesser grain borer, quality and storage stability of packaged milled rice. LWT, 140(July 2020), 110813. https://doi.org/10.1016/j.lwt.2020.110813

  • Longhi, D. A., Dalcanton, F., De Aragão, G. M. F., Carciofi, B. A. M., & Laurindo, J. B. (2017). Microbial growth models: A general mathematical approach to obtain μmax and λ parameters from sigmoidal empirical primary models. Brazilian Journal of Chemical Engineering, 34(2), 369–375. https://doi.org/10.1590/0104-6632.20170342s20150533

    Article  Google Scholar 

  • Longhi, D. A., Dalcanton, F., de Aragão, G. M. F., Carciofi, B. A. M., & Laurindo, J. B. (2013). Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. Journal of Theoretical Biology, 335, 88–96. https://doi.org/10.1016/j.jtbi.2013.06.030

    Article  PubMed  Google Scholar 

  • Longhi, Daniel Angelo, Silva, N. B. da, Martins, W. F., Carciofi, B. A. M., Aragão, G. M. F. de, & Laurindo, J. B. (2018). Optimal experimental design to model spoilage bacteria growth in vacuum-packaged ham. 216, 20–26.

  • Lorini, I., Krzyzanowski, F. C., José de Barros França-Neto, Henning, A. A., & Henning, F. A. (2015). Manejo Integrado de Pragas de Grãos e Sementes Armazenadas. In Empresa Brasileira de Pesquisa Agropecuária (1st ed.). Embrapa, Empresa Brasileira de Pesquisa Agropecuária.

  • Manickavasagan, A., Alahakoon, P. M. K., Al-Busaidi, T. K., Al-Adawi, S., Al-Wahaibi, A. K., Al-Raeesi, A. A., Al-Yahyai, R., & Jayas, D. S. (2013). Disinfestation of stored dates using microwave energy. Journal of Stored Products Research, 55, 1–5. https://doi.org/10.1016/j.jspr.2013.05.005

    Article  Google Scholar 

  • Mason, L. J., & McDonough, M. (2012). Biology, Behavior, and Ecology of Stored Grain and Legume Insects. In D. W. Hagstrum, T. W. Phillips, & G. Cuperus (Eds.), Stored Product Protection (p. 350). K-State Research and Extension.

  • Mbata, G. N., Johnson, M., Phillips, T. W., & Payton, M. (2005). Mortality of Life Stages of Cowpea Weevil (Coleoptera: Bruchidae) Exposed to Low Pressure at Different Temperatures. Journal of Economic Entomology, 98(3), 1070–1075. https://doi.org/10.1603/0022-0493-98.3.1070

    Article  PubMed  Google Scholar 

  • Mbata, G. N., Phillips, T. W., & Payton, M. (2004). Mortality of Eggs of Stored-Product Insects Held Under Vacuum: Effects of Pressure, Temperature, and Exposure Time. Journal of Economic Entomology, 97(2), 695–702. https://doi.org/10.1093/jee/97.2.695

    Article  PubMed  Google Scholar 

  • Mengarda, B. D. T., De Moraes, J. O., Cheng, Y., Cheng, R. A., Moraru, C. I., Carciofi, B. A.M. (2021). Effective pulsed light treatments for inactivating Salmonella enterica serotypes. Food Control, 135, 108776. https://doi.org/10.1016/j.foodcont.2021.108776

  • Mohapatra, D., Kar, A., & Giri, S. K. (2015). Insect pest management in stored pulses: An overview. Food and Bioprocess Technology, 8(2), 239–265. https://doi.org/10.1007/s11947-014-1399-2

    Article  CAS  Google Scholar 

  • Moirangthem, T. T., & Baik, O. D. (2021). Disinfestation of stored grains using non-chemical technologies – A review. Trends in Food Science and Technology, 107(January 2020), 299–308. https://doi.org/10.1016/j.tifs.2020.11.002

  • Nayak, M. K. (2012). Managing resistance to phosphine in storage pests: Challenges and opportunities. In A. K. Navarro S, Banks HJ, Jayas DS, Bell CH, Noyes RT, Ferizli AG, Emekci M, Isikber AA (Ed.), Proc. 9th. Int. Conf. on Controlled Atmosphere and Fumigation in Stored Products (Issue October, pp. 609–619). ARBER Professional Congress Services.

  • Opit, G. P., Phillips, T. W., Aikins, M. J., & Hasan, M. M. (2012). Phosphine Resistance in Tribolium castaneum and Rhyzopertha dominica From Stored Wheat in Oklahoma. Journal of Economic Entomology, 105(4), 1107–1114. https://doi.org/10.1603/EC12064

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z., Khir, R., Godfrey, L. D., Lewis, R., Thompson, J. F., & Salim, A. (2008). Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality. Journal of Food Engineering, 84(3), 469–479. https://doi.org/10.1016/j.jfoodeng.2007.06.005

    Article  Google Scholar 

  • Pawson, S. M., Bader, M. K. F., Brockerhoff, E. G., Heffernan, W. J. B., Kerr, J. L., & O’Connor, B. (2019). Quantifying the thermal tolerance of wood borers and bark beetles for the development of Joule heating as a novel phytosanitary treatment of pine logs. Journal of Pest Science, 92(1), 157–171. https://doi.org/10.1007/s10340-018-1015-8

    Article  Google Scholar 

  • Pei, Y., Tao, T., Yang, G., Wang, Y., Yan, W., & Ding, C. (2018). Lethal effects and mechanism of infrared radiation on Sitophilus zeamais and Tribolium castaneum in rough rice. Food Control, 88, 149–158. https://doi.org/10.1016/j.foodcont.2018.01.012

    Article  CAS  Google Scholar 

  • Peleg, M. (1996). Evaluation of the Fermi equation as a model of dose-response curves. Applied Microbiology and Biotechnology, 46(3), 303–306. https://doi.org/10.1007/s002530050821

    Article  CAS  Google Scholar 

  • Pimentel, M. A. G., Faroni, L. R. D. A., Guedes, R. N. C., Sousa, A. H., & Tótola, M. R. (2009). Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Stored Products Research, 45(1), 71–74. https://doi.org/10.1016/j.jspr.2008.09.001

    Article  CAS  Google Scholar 

  • Purohit, P., Jayas, D. S., Yadav, B. K., Chelladurai, V., Fields, P. G., & White, N. D. G. (2013). Microwaves to control Callosobruchus maculatus in stored mung bean (Vigna radiata). Journal of Stored Products Research, 53, 19–22. https://doi.org/10.1016/j.jspr.2013.01.002

    Article  Google Scholar 

  • Raj Boina, D., Subramanyam, B., & Alavi, S. (2008). Dynamic model for predicting survival of mature larvae of Tribolium confusum during facility heat treatments. Journal of Economic Entomology, 101(3), 989–997. https://doi.org/10.1093/jee/101.3.989

    Article  Google Scholar 

  • Ranjbaran, M., Carciofi, B. A. M., & Datta, A. K. (2021). Engineering modeling frameworks for microbial food safety at various scales. Comprehensive Reviews in Food Science and Food Safety, 20, 4213–4249. https://doi.org/10.1111/1541-4337.12818

    Article  PubMed  Google Scholar 

  • Saglam, Ö., Edde, P. A., & Phillips, T. W. (2015). Resistance of Lasioderma serricorne (Coleoptera: Anobiidae) to fumigation with phosphine. Journal of Economic Entomology, 108(5), 2489–2495. https://doi.org/10.1093/jee/tov193

    Article  CAS  PubMed  Google Scholar 

  • Sayed, W. A. A., Hassan, R. S., Sileem, T. M., & Rumpold, B. A. (2021). Impact of plasma irradiation on Tribolium castaneum. Journal of Pest Science, 94(4), 1405–1414. https://doi.org/10.1007/s10340-021-01360-9

    Article  CAS  Google Scholar 

  • Singh, R., Singh, K. K., & Kotwaliwale, N. (2012). Study on disinfestation of pulses using microwave technique. Journal of Food Science and Technology, 49(4), 505–509. https://doi.org/10.1007/s13197-011-0296-1

    Article  PubMed  Google Scholar 

  • Tang, J., Ikediala, J. N., Wang, S., Hansen, J. D., & Cavalieri, R. P. (2000). High-temperature-short-time thermal quarantine methods. Postharvest Biology and Technology, 21(1), 129–145. https://doi.org/10.1016/S0925-5214(00)00171-X

    Article  Google Scholar 

  • Tang, J., Mitcham, E., Wang, S., & Lurie, S. (2007). Heat treatments for postharvest pest control: Theory and Practice (1st ed.). CABI.

  • UNEP. (2002). Montreal protocol on substances that deplet the ozone layer. In . United Nations Environment Programme. Report of the Methyl Bromide Technical Options Committee (p. 437).

  • UNEP, O. S. (2019). Handbook for the Montreal Protocol on substances that deplete the ozone layer (U. N. E. P. UNEP (ed.); 13th ed.). UNEP - Ozone Secretariat.

  • Vadivambal, R., Deji, O. F., Jayas, D. S., & White, N. D. G. (2010). Disinfestation of stored corn using microwave energy. Agriculture and Biology Journal of North America, 1(1), 18–26.

    Google Scholar 

  • Vadivambal, R., Jayas, D. S., & White, N. D. G. (2008). Determination of mortality of life stages of Tribolium castaneum in rye using microwave energy.

  • Venkidusamy, M., Jagadeesan, R., Nayak, M. K., Subbarayalu, M., Subramaniam, C., & Collins, P. J. (2018). Relative tolerance and expression of resistance to phosphine in life stages of the rusty grain beetle, Cryptolestes ferrugineus. Journal of Pest Science, 91(1), 277–286. https://doi.org/10.1007/s10340-017-0875-7

    Article  Google Scholar 

  • Verghese, A., Nagaraju, D. K., & Sreedevi, K. (2011). Hot water as an effective post harvest disinfestant for the Oriental fruit fly, Bactrocera dorsalis (Hendel) on mango. Pest Management in Horticultural Ecosystems, 17(2), 63–68.

    Google Scholar 

  • Wang, S., Ikediala, J. N., Tang, J., & Hansen, J. D. (2002a). Thermal death kinetics and heating rate effects for fifth-instar Cydia pomonella (L.) (Lepidoptera: Tortricidae). Journal of Stored Products Research, 38(5), 441–453. https://doi.org/10.1016/S0022-474X(01)00047-9

  • Wang, S., Tang, J., Johnson, J. A., & Hansen, J. D. (2002b). Thermal-death kinetics of fifth-instar Amyelois transitella (Walker) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 38(5), 427–440. https://doi.org/10.1016/S0022-474X(01)00046-7

    Article  Google Scholar 

  • Yan, R., Huang, Z., Zhu, H., Johnson, J. A., & Wang, S. (2014). Thermal death kinetics of adult Sitophilus oryzae and effects of heating rate on thermotolerance. Journal of Stored Products Research, 59, 231–236. https://doi.org/10.1016/j.jspr.2014.03.006

    Article  Google Scholar 

  • Yang, C., Zhao, Y., Tang, Y., Yang, R., Yan, W., & Zhao, W. (2018). Radio frequency heating as a disinfestation method against Corcyra cephalonica and its effect on properties of milled rice. Journal of Stored Products Research, 77, 112–121. https://doi.org/10.1016/j.jspr.2018.04.004

    Article  Google Scholar 

  • Yu, D., Shrestha, B., & Baik, O. D. (2017). Thermal death kinetics of adult red flour beetle Tribolium castaneum (Herbst) in canola seeds during radio frequency heating. International Journal of Food Properties, 20(12), 3064–3075. https://doi.org/10.1080/10942912.2016.1272609

    Article  Google Scholar 

  • Zhao, S., Qiu, C., Xiong, S., & Cheng, X. (2007). A thermal lethal model of rice weevils subjected to microwave irradiation. Journal of Stored Products Research, 43, 430–434. https://doi.org/10.1016/j.jspr.2006.12.005

    Article  Google Scholar 

  • Zhou, L., Ling, B., Zheng, A., Zhang, B., & Wang, S. (2015). Developing radio frequency technology for postharvest insect control in milled rice. Journal of Stored Products Research, 62, 22–31. https://doi.org/10.1016/j.jspr.2015.03.006

    Article  Google Scholar 

  • Zhou, L., & Wang, S. (2016). Industrial-scale radio frequency treatments to control Sitophilus oryzae in rough, brown, and milled rice. Journal of Stored Products Research, 68, 9–18. https://doi.org/10.1016/j.jspr.2016.03.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies National Council for Scientific, Technological Development (CNPq) and the Coordination for the Improvement of Higher Level Personnel (CAPES, financial code 001 and CAPES-PRINT Project 88887.310373/2018–00) for their financial support and scholarship.

Funding

Financial support was received from the Brazilian agencies National Council for Scientific, Technological Development (CNPq) and Coordination for the Improvement of Higher Level Personnel (CAPES, financial code 001 and CAPES-PRINT Project 88,887.310373/2018–00).

Author information

Authors and Affiliations

Authors

Contributions

Emanuelle I.B Parisotto: Conceptualization, Methodology, Investigation, Validation, Modeling, Writing – original draft preparation. Edilson Caron: Methodology, Resources, Writing – review & editing, Supervision. Jhony T. Teleken: Modeling, Numerical methods, Writing – review & editing. João B. Laurindo: Conceptualization, Methodology, Resources, Writing – review & editing, Supervision. Bruno A.M. Carciofi: Conceptualization, Methodology, Validation, Resources, Modeling, Writing – review & editing, Supervision, Project administration.

Corresponding author

Correspondence to Bruno A. M. Carciofi.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisotto, E.I.B., Caron, E., Teleken, J.T. et al. Mathematical Modeling for Thermal Lethality of Maize Weevil (Sitophilus zeamais) Adults. Food Bioprocess Technol 16, 1757–1768 (2023). https://doi.org/10.1007/s11947-023-03026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03026-z

Keywords

Navigation