Skip to main content
Log in

Chitosan-Based Nanoencapsulation of Ocimum americanum Essential Oil as Safe Green Preservative Against Fungi Infesting Stored Millets, Aflatoxin B1 Contamination, and Lipid Peroxidation

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Present study deals with the first-time report on encapsulation of Ocimum americanum essential oil (OAEO) into chitosan matrix with enhanced antifungal, aflatoxin B1 (AFB1) inhibition, antioxidant activity, and in situ efficacy in the millet food system. GC–MS analysis suggested citral (66.72%) as the major component of OAEO. Physicochemical characterizations through SEM, FTIR, and XRD analyses confirmed the successful loading of OAEO into chitosan nanoemulsion (OAEO-CsNe). In vitro release profile of nanoencapsulated OAEO exhibited biphasic burst and controlled volatilisation, a prerequisite for long-term antifungal effect in the stored food system. OAEO-CsNe completely inhibited the growth and AFB1 production of Aspergillus flavus at 0.2 and 0.175 μL/mL, respectively. Inhibition of ergosterol biosynthesis followed by the release of vital cellular ions, and 260, 280 nm absorbing materials from AFLHPSi-1 cells suggested plasma membrane as a potential site of antifungal action of OAEO-CsNe. Significant reduction of cellular methylglyoxal (an AFB1 inducer) level in AFLHPSi-1 cells after fumigation with OAEO-CsNe confirmed the novel biochemical mechanism of anti-aflatoxigenic activity. Additionally, in silico modelling of citral (major component of OAEO) with Ver-1 and Omt-A proteins suggested the hydrogen bond-dependent molecular interaction for inhibition of AFB1 biosynthesis. OAEO-CsNe showed significant in situ antifungal, anti-aflatoxigenic, and lipid peroxidation-suppressing potentialities without altering the organoleptic and germination properties of Setaria italica seeds. Moreover, the appreciative safety profile (LD50 = 11,162.06 μL/kg) of OAEO-CsNe in a mammalian model system (Mus musculus) strengthens its recommendation as an effective green preservative against fungal infestation, AFB1 contamination, and reactive oxygen species-mediated lipid peroxidation in stored food commodities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Allured publishing corporation.

    Google Scholar 

  • Ahmadi, T., Shabani, L., & Sabzalian, M. R. (2021). LED light sources improved the essential oil components and antioxidant activity of two genotypes of lemon balm (Melissa officinalis L.). Botanical Studies62(1), 1–13. https://doi.org/10.1186/s40529-021-00316-7

  • Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180

    Article  CAS  PubMed  Google Scholar 

  • Alipour, M., Saharkhiz, M. J., Niakousari, M., & Damyeh, M. S. (2019). Phytotoxicity of encapsulated essential oil of rosemary on germination and morphophysiological features of amaranth and radish seedlings. Scientia Horticulturae, 243, 131–139. https://doi.org/10.1016/j.scienta.2018.08.023

    Article  CAS  Google Scholar 

  • Alshannaq, A., & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 14(6), 632. https://doi.org/10.3390/ijerph14060632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amalraj, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, 151, 366–375. https://doi.org/10.1016/j.ijbiomac.2020.02.176

    Article  CAS  PubMed  Google Scholar 

  • Aziz, S. G. G., & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology11(8), 1552–1565. https://doi.org/10.1007/s11947-018-2121-6

  • Błaszczyk, A., Augustyniak, A., & Skolimowski, J. (2013). Ethoxyquin: An antioxidant used in animal feed. International journal of food science. https://doi.org/10.1155/2013/585931

  • Buendía-Moreno, L., Ros-Chumillas, M., Navarro-Segura, L., Sánchez-Martínez, M. J., Soto-Jover, S., Antolinos, V., Martínez-Hernández, G. B., & López-Gómez, A. (2019). Effects of an active cardboard box using encapsulated essential oils on the tomato shelf life. Food and Bioprocess Technology, 12(9), 1548–1558. https://doi.org/10.1007/s11947-019-02311-0

    Article  CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  • Cai, M., Wang, Y., Wang, R., Li, M., Zhang, W., Yu, J., & Hua, R. (2022). Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2022.01.066

  • Cai, R., Hu, M., Zhang, Y., Niu, C., Yue, T., Yuan, Y., & Wang, Z. (2019). Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. Lwt, 106, 50–56. https://doi.org/10.1016/j.lwt.2019.02.059

    Article  CAS  Google Scholar 

  • Chaudhari, A. K., Singh, V. K., Das S, & Dubey, N. K. (2022). Fabrication, characterization, and bioactivity assessment of chitosan nanoemulsion containing allspice essential oil to mitigate Aspergillus flavus contamination and aflatoxin B1 production in maize. Food Chemistry372,131221. https://doi.org/10.1016/j.foodchem.2021.131221

  • Chaudhari, A. K., Singh, V. K., Das, S., Singh, B. K., & Dubey, N. K. (2020). Antimicrobial, aflatoxin B1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize. Food and Bioprocess Technology, 13(8), 1462–1477. https://doi.org/10.1007/s11947-020-02479-w

    Article  CAS  Google Scholar 

  • Chen, Z. Y., Brown, R. L., Damann, K. E., & Cleveland, T. E. (2004). Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathology, 94(9), 938–945. https://doi.org/10.1094/PHYTO.2004.94.9.938

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. H., Nah, J. Y., Lee, M. J., Jang, J. Y., Lee, T., & Kim, J. (2021). Fusarium diversity and mycotoxin occurrence in proso millet in Korea. LWT141, 110964. https://doi.org/10.1016/j.lwt.2021.110964

  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach.

  • Coats, J. R. (1994). Risks from natural versus synthetic insecticides. Annual Review of Entomology, 39(1), 489–515.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, V. D., Almeida-Souza, F., Teles, A. M., Neto, P. A., Mondego-Oliveira, R., Mendes Filho, N. E., ... & Mouchrek Filho, V. E. (2018). Chemical composition of Ocimum canum Sims. essential oil and the antimicrobial, antiprotozoal and ultrastructural alterations it induces in Leishmania amazonensis promastigotes. Industrial Crops and Products119, 201–208. https://doi.org/10.1016/j.indcrop.2018.04.005

  • Danh, L. T., Han, L. N., Triet, N. D. A., Zhao, J., Mammucari, R., & Foster, N. (2013). Comparison of chemical composition, antioxidant and antimicrobial activity of lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food and bioprocess technology6(12), 3481–3489. https://doi.org/10.1007/s11947-012-1026-z

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2020). Myristica fragrans essential oil nanoemulsion as novel green preservative against fungal and aflatoxin contamination of food commodities with emphasis on biochemical mode of action and molecular docking of major components. LWT130, 109495. https://doi.org/10.1016/j.lwt.2020.109495

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021a). Insecticidal and fungicidal efficacy of essential oils and nanoencapsulation approaches for the development of next generation ecofriendly green preservatives for management of stored food commodities: An overview. International Journal of Pest Management, 1–32. https://doi.org/10.1080/09670874.2021.1969473

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021b). Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B1 synthesizing genes based on molecular docking. Carbohydrate Polymers, 255,117339. https://doi.org/10.1016/j.carbpol.2020.117339

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021c). Anethum graveolens essential oil encapsulation in chitosan nanomatrix: investigations on in-vitro release behaviour, organoleptic attributes, and efficacy as potential delivery vehicles against biodeterioration of rice (Oryza sativa L.). Food and Bioprocess Technology14(5), 831–853. https://doi.org/10.1007/s11947-021-02589-z

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021d). Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food Chemistry, 344, 128574. https://doi.org/10.1016/j.foodchem.2020.128574

  • de Souza, H. J. B., de Barros Fernandes, R. V., Borges, S. V., Felix, P. H. C., Viana, L. C., Lago, A. M. T., & Botrel, D. A. (2018). Utility of blended polymeric formulations containing cellulose nanofibrils for encapsulation and controlled release of sweet orange essential oil. Food and Bioprocess Technology, 11(6), 1188–1198. https://doi.org/10.1007/s11947-018-2082-9

    Article  CAS  Google Scholar 

  • Deepika, Chaudhari, A. K., Singh, A., Das, S., & Dubey, N. K. (2021). Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. Food Bioscience42, 101117. https://doi.org/10.1016/j.fbio.2021.101117

  • Dwivedy, A. K., Singh, V. K., Prakash, B., & Dubey, N. K. (2018). Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food and Chemical Toxicology, 111, 102–113. https://doi.org/10.1016/j.fct.2017.11.007

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2012). Scientific opinion on the re-evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA Journal, 10(3), 2588. https://doi.org/10.2903/j.efsa.2012.2588

    Article  CAS  Google Scholar 

  • Elsaied, B. E., & Tayel, A. A. (2022). Chitosan‐based nanoparticles and their applications in food industry. Nanotechnology‐Enhanced Food Packaging, 87–128. https://doi.org/10.1002/9783527827718.ch5

  • Esmaeili, A., & Asgari, A. (2015). In-vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 81, 283–290. https://doi.org/10.1016/j.ijbiomac.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  • Fabra, M. J., Flores-López, M. L., Cerqueira, M. A., de Rodriguez, D. J., Lagaron, J. M., & Vicente, A. A. (2016). Layer-by-layer technique to developing functional nanolaminate films with antifungal activity. Food and Bioprocess Technology, 9(3), 471–480. https://doi.org/10.1007/s11947-015-1646-1

    Article  CAS  Google Scholar 

  • Finney, D. J. (1971). Probit analysis. Cambridge University Press.

    Google Scholar 

  • Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2016). Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology, 9(7), 1187–1201. https://doi.org/10.1007/s11947-016-1708-z

    Article  CAS  Google Scholar 

  • Gholivand, M. B., Rahimi-Nasrabadi, M., Batooli, H., & Ebrahimabadi, A. H. (2010). Chemical composition and antioxidant activities of the essential oil and methanol extracts of Psammogeton canescens. Food and Chemical Toxicology, 48(1), 24–28. https://doi.org/10.1016/j.fct.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  • Giri, P. (2019). Phytochemical Analysis of Ocimum americanum Linn. with Special Reference to the Impact of In vitro Flowering on the Production of Aromatic Compounds. Journal of Biological and chemical Chronicles5(1), 38–42.

  • Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S., & Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydrate polymers236, 116075. https://doi.org/10.1016/j.carbpol.2020.116075

  • Hariharan, D., Saied, A., & Kocher, H. M. (2008). Analysis of mortality rates for pancreatic cancer across the world. Hpb, 10(1), 58–62. https://doi.org/10.1080/13651820701883148

  • Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113–122. https://doi.org/10.1016/j.foodchem.2018.09.085

    Article  CAS  PubMed  Google Scholar 

  • Hassane, S. O. S., Farah, A., Satrani, B., Ghanmi, M., Chahmi, N., Soidrou, S. H., & Chaouch, A. (2012). Chemical composition and antimicrobial activity of comorian Ocimum canum essential oil harvested in the region of Maweni Dimani-Grande Comoros. In Chemistry for sustainable development (pp. 443–452). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8650-1_29

  • Hemmatkhah, F., Zeynali, F., & Almasi, H. (2020). Encapsulated cumin seed essential oil-loaded active papers: Characterization and evaluation of the effect on quality attributes of beef hamburger. Food and Bioprocess Technology, 13(3), 533–547. https://doi.org/10.1007/s11947-020-02418-9

    Article  CAS  Google Scholar 

  • Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56. https://doi.org/10.1016/j.carbpol.2013.02.031

    Article  CAS  PubMed  Google Scholar 

  • Hussain, A. I., Anwar, F., Sherazi, S. T. H., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995. https://doi.org/10.1016/j.foodchem.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer. (2012). A review of human carcinogens. F. Chemical Agents and Related Occupations: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.

  • Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

    Article  CAS  PubMed  Google Scholar 

  • Jafarzadeh, S., Hadidi, M., Forough, M., Nafchi, A. M., & Mousavi Khaneghah, A. (2022). The control of fungi and mycotoxins by food active packaging: A review. Critical Reviews in Food Science and Nutrition, 1–19. https://doi.org/10.1080/10408398.2022.2031099

  • Ju, J., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Zhang, R., & Yao, W. (2020). Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chemistry310, 125974. https://doi.org/10.1016/j.foodchem.2019.125974

  • Kedia, A., Prakash, B., Mishra, P. K., & Dubey, N. K. (2014). Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. International Journal of Food Microbiology, 168, 1–7. https://doi.org/10.1016/j.ijfoodmicro.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  • Kola, G., Reddy, P. C. O., Shaik, S., Gunti, M., Palakurthi, R., Talwar, H. S., & Sekhar, A. C. (2020). Variability in seed mineral composition of foxtail millet (Setaria italica L.) landraces and released cultivars. Current Trends in Biotechnology & Pharmacy, 10. https://doi.org/10.5530/ctbp.2020.3.25

  • Kos, J., Hajnal, E. J., Malachová, A., Steiner, D., Stranska, M., Krska, R., & Sulyok, M. (2020). Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food chemistry312, 126034. https://doi.org/10.1016/j.foodchem.2019.126034

  • Kujur, A., Kumar, A., Singh, P. P., & Prakash, B. (2021). Fabrication, characterization, and antifungal assessment of Jasmine essential oil-loaded chitosan nanomatrix against Aspergillus flavus in food system. Food and Bioprocess Technology, 14(3), 554–571. https://doi.org/10.1007/s11947-021-02592-4

    Article  CAS  Google Scholar 

  • Lai, T. Y., Chen, C. H., & Lai, L. S. (2013). Effects of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the quality of minimally processed carrots. Food and Bioprocess Technology, 6(1), 249–258. https://doi.org/10.1007/s11947-011-0707-3

    Article  CAS  Google Scholar 

  • Lata, C., Gupta, S., & Prasad, M. (2013). Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 33(3), 328–343. https://doi.org/10.3109/07388551.2012.716809

    Article  PubMed  Google Scholar 

  • Lee, J. J. L., Cui, X., Chai, K. F., Zhao, G., & Chen, W. N. (2020). Interfacial assembly of a cashew nut (Anacardium occidentale) testa extract onto a cellulose-based film from sugarcane bagasse to produce an active packaging film with pH-triggered release mechanism. Food and Bioprocess Technology, 13(3), 501–510. https://doi.org/10.1007/s11947-020-02414-z

    Article  CAS  Google Scholar 

  • López-Meneses, A. K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R. R., & Cortez-Rocha, M. O. (2018). Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT, 96, 597–603. https://doi.org/10.1016/j.lwt.2018.06.013

    Article  CAS  Google Scholar 

  • Maleki, G., Woltering, E. J., & Mozafari, M. R. (2022). Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2022.01.001

    Article  Google Scholar 

  • Matasyoh, J. C., Bendera, M. M., Ogendo, J. O., Omollo, E. O., & Deng, A. L. (2006). Volatile leaf oil constituents of Ocimum americanum L. occuring in Western Kenya. Bulletin of the Chemical Society of Ethiopia20(1), 177–180. https://doi.org/10.4314/bcse.v20i1.21159

  • Matshetshe, K. I., Parani, S., Manki, S. M., & Oluwafemi, O. S. (2018). Preparation, characterization and in vitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. International Journal of Biological Macromolecules, 118, 676–682. https://doi.org/10.1016/j.ijbiomac.2018.06.125

    Article  CAS  PubMed  Google Scholar 

  • Nada, S., Nikola, T., Bozidar, U., Ilija, D., & Andreja, R. (2022). Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control, 108855. https://doi.org/10.1016/j.foodcont.2022.108855

  • Navikaite-Snipaitiene, V., Ivanauskas, L., Jakstas, V., Rüegg, N., Rutkaite, R., Wolfram, E., & Yildirim, S. (2018). Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef. Meat Science, 145, 9–15. https://doi.org/10.1016/j.meatsci.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  • Ostry, V., Malir, F., Toman, J., & Grosse, Y. (2017). Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Research, 33(1), 65–73. https://doi.org/10.1007/s12550-016-0265-7

    Article  CAS  PubMed  Google Scholar 

  • OuYang, Q., Okwong, R. O., Chen, Y., & Tao, N. (2020). Synergistic activity of cinnamaldehyde and citronellal against green mold in citrus fruit. Postharvest Biology and Technology162, 111095. https://doi.org/10.1016/j.postharvbio.2019.111095

  • Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91, 185–192. https://doi.org/10.1016/j.foodcont.2018.03.047

    Article  CAS  Google Scholar 

  • Panda, P. K., Yang, J. M., Chang, Y. H., & Su, W. W. (2019). Modification of different molecular weights of chitosan by p-Coumaric acid: Preparation, characterization and effect of molecular weight on its water solubility and antioxidant property. International Journal of Biological Macromolecules, 136, 661–667. https://doi.org/10.1016/j.ijbiomac.2019.06.082

    Article  CAS  PubMed  Google Scholar 

  • Papoutsis, K., Mathioudakis, M. M., Hasperué, J. H., & Ziogas, V. (2019). Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends in Food Science & Technology, 86, 479–491. https://doi.org/10.1016/j.tifs.2019.02.053

    Article  CAS  Google Scholar 

  • Peretto, G., Du, W. X., Avena-Bustillos, R. J., De J. Berrios, J., Sambo, P., & McHugh, T. H. (2017). Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food and Bioprocess Technology, 10, 165–174. https://doi.org/10.1007/s11947-016-1808-9

  • Plati, F., & Paraskevopoulou, A. (2022). Micro-and nano-encapsulation as tools for essential oils advantages’ exploitation in food applications: The case of oregano essential oil. Food and Bioprocess Technology, 1–29. https://doi.org/10.1007/s11947-021-02746-4

  • Prasad, J., Das, S., Maurya, A., Jain, S. K., & Dwivedy, A. K. (2022). Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B1 contamination in food system. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2022.02.060

    Article  PubMed  PubMed Central  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  • Roshan, A. B., Dubey, N. K., & Mohana, D. C. (2021). Chitosan nanoencapsulation of Pogostemon cablin (Blanco) Benth. essential oil and its novel preservative effect for enhanced shelf life of stored Maize kernels during storage: Evaluation of its enhanced antifungal, antimycotoxin, antioxidant activities and possible mode of action. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.15289

  • Roshan, A. B., Venkatesh, H. N., Dubey, N. K., & Mohana, D. C. (2022). Chitosan-based nanoencapsulation of Toddalia asiatica (L.) Lam. essential oil to enhance antifungal and aflatoxin B1 inhibitory activities for safe storage of maize. International Journal of Biological Macromolecules, 204, 476–484. https://doi.org/10.1016/j.ijbiomac.2022.02.026

    Article  CAS  PubMed  Google Scholar 

  • Saeed, K., Pasha, I., Jahangir Chughtai, M. F., Ali, Z., Bukhari, H., & Zuhair, M. (2022). Application of essential oils in food industry: challenges and innovation. Journal of Essential Oil Research, 1–14. https://doi.org/10.1080/10412905.2022.2029776

  • Sarin, Y. K., Agarwal, S. G., Thappa, R. K., Singh, K., & Kapahi, B. K. (1992). A high yielding citral-rich strain of Ocimum americanum L. from India. Journal of Essential Oil Research4(5), 515–519. https://doi.org/10.1080/10412905.1992.9698119

  • Sarma, D. S. K., & Babu, A. V. S. (2011). Pharmacognostic and phytochemical studies of Ocimum americanum. Journal of Chemical and Pharmaceutical Research, 3(3), 337–347.

    Google Scholar 

  • Shadia, E., El-Aziz, A. B. D., Omer, E. A., & Sabra, A. S. (2007). Chemical composition of Ocimum americanum essential oil and its biological effects against Agrotis ipsilon (Lepidoptera: Noctuidae). Research Journal of Agriculture and Biological Sciences, 3(6), 740–747.

    CAS  Google Scholar 

  • Sharma, N., & Niranjan, K. (2018). Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International, 34(4), 329–363. https://doi.org/10.1080/87559129.2017.1290103

    Article  CAS  Google Scholar 

  • Simon, J. E., Morales, M. R., Phippen, W. B., Vieira, R. F., & Hao, Z. (1999). Basil: A source of aroma compounds and a popular culinary and ornamental herb. Perspectives on New Crops and New Uses, 16, 499–505.

    Google Scholar 

  • Singh, B. K., Tiwari, S., & Dubey, N. K. (2021). Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: A review. Journal of the Science of Food and Agriculture, 101(12), 4879–4890. https://doi.org/10.1002/jsfa.11255

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. K., Tiwari, S., Maurya, A., Kumar, S., & Dubey, N. K. (2022). Fungal and mycotoxin contamination of herbal raw materials and their protection by nanoencapsulated essential oils: An overview. Biocatalysis and Agricultural Biotechnology39, 102257. https://doi.org/10.1016/j.bcab.2021.102257

  • Singh, P. P., Kumar, A., & Prakash, B. (2020). Elucidation of antifungal toxicity of Callistemon lanceolatus essential oil encapsulated in chitosan nanogel against Aspergillus flavus using biochemical and in-silico approaches. Food Additives & Contaminants: Part A, 37(9), 1520–1530. https://doi.org/10.1080/19440049.2020.1775310

    Article  CAS  Google Scholar 

  • Singh, V., Praveen, V., Tripathi, D., Haque, S., Somvanshi, P., Katti, S. B., & Tripathi, C. K. M. (2015). Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum. Scientific Reports, 5(1), 1–13. https://doi.org/10.1038/srep11948

    Article  Google Scholar 

  • Souza, M. P., Vaz, A. F., Cerqueira, M. A., Texeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015). Effect of an edible nanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut mangoes. Food and Bioprocess Technology, 8(3), 647–654. https://doi.org/10.1007/s11947-014-1436-1

    Article  CAS  Google Scholar 

  • Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2018). Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology, 11(2), 427–434. https://doi.org/10.1007/s11947-017-2026-9

    Article  CAS  Google Scholar 

  • Tian, J., Huang, B., Luo, X., Zeng, H., Ban, X., He, J., & Wang, Y. (2012). The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chemistry130(3), 520–527. https://doi.org/10.1016/j.foodchem.2011.07.061

  • Tiwari, S., Upadhyay, N., Singh, B. K., Singh, V. K., & Dubey, N. K. (2022a). Facile fabrication of nanoformulated Cinnamomum glaucescens essential oil as a novel green strategy to boost potency against food borne fungi, aflatoxin synthesis, and lipid oxidation. Food and Bioprocess Technology, 1–19. https://doi.org/10.1007/s11947-021-02739-3

  • Tiwari, S., Upadhyay, N., Singh, B. K., Singh, V. K., & Dubey, N. K. (2022b). Chemically characterized nanoencapsulated Homalomena aromatica Schott. essential oil as green preservative against fungal and aflatoxin B1 contamination of stored spices based on in vitro and in situ efficacy and favorable safety profile on mice. Environmental Science and Pollution Research29(2), 3091–3106. https://doi.org/10.1007/s11356-021-15794-2

  • Udeh, H. O., & Kgatla, T. E. (2013). Role of magnesium ions on yeast performance during very high gravity fermentation. Journal of Brewing and Distilling, 4(2), 19–45. https://doi.org/10.5897/JBD2013.0041

    Article  CAS  Google Scholar 

  • Upadhyay, N., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021). Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. International Journal of Biological Macromolecules, 171, 480–490. https://doi.org/10.1016/j.ijbiomac.2021.01.024

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, N., Singh, V. K., Dwivedy, A. K., Das, S., Chaudhari, A. K., & Dubey, N. K. (2018). Cistus ladanifer L. essential oil as a plant-based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT-Food Science and Technology, 92, 395–403. https://doi.org/10.1016/j.lwt.2018.02.040

    Article  CAS  Google Scholar 

  • Verma, R. S., Kumar, A., Mishra, P., Kuppusamy, B., Padalia, R. C., & Sundaresan, V. (2016). Essential oil composition of four Ocimum spp. from the Peninsular India. Journal of Essential Oil Research28(1), 35–41. https://doi.org/10.1080/10412905.2015.1076742

  • Wani, H. M., Sharma, P., Wani, I. A., Kothari, S. L., & Wani, A. A. (2021). Influence of γ-irradiation on antioxidant, thermal and rheological properties of native and irradiated whole grain millet flours. International Journal of Food Science & Technology, 56(8), 3752–3762. https://doi.org/10.1111/ijfs.15062

    Article  CAS  Google Scholar 

  • Wani, T. A., Masoodi, F. A., Akhter, R., Akram, T., Gani, A., & Shabir, N. (2022). Nanoencapsulation of hydroxytyrosol in chitosan crosslinked with sodium bisulfate tandem ultrasonication: Techno-characterization, release and antiproliferative properties. Ultrasonics Sonochemistry82, 105900. https://doi.org/10.1016/j.ultsonch.2021.105900

  • Woranuch, S., & Yoksan, R. (2013). Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydrate Polymers, 96(2), 495–502. https://doi.org/10.1016/j.carbpol.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  • Xing, F., Wang, L., Liu, X., Selvaraj, J. N., Wang, Y., Zhao, Y., & Liu, Y. (2017). Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus. International Journal of Food Microbiology, 256, 1–10. https://doi.org/10.1016/j.ijfoodmicro.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  • Xu, D., Wei, M., Peng, S., Mo, H., Huang, L., Yao, L., & Hu, L. (2021). Cuminaldehyde in cumin essential oils prevents the growth and aflatoxin B1 biosynthesis of Aspergillus flavus in peanuts. Food Control125, 107985. https://doi.org/10.1016/j.foodcont.2021.107985

  • Yadav, S. K., Singla-Pareek, S. L., Ray, M., Reddy, M. K., & Sopory, S. K. (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337(1), 61–67. https://doi.org/10.1016/j.bbrc.2005.08.263

    Article  CAS  PubMed  Google Scholar 

  • Yamada, A. N., Grespan, R., Yamada, Á. T., Silva, E. L., Silva-Filho, S. E., Damião, M. J., ... & Cuman, R. K. N. (2013). Anti-inflammatory activity of Ocimum americanum L. essential oil in experimental model of zymosan-induced arthritis. The American Journal of Chinese Medicine41(04), 913–926. https://doi.org/10.1142/S0192415X13500614

  • Yang, T., Qin, W., Zhang, Q., Luo, J., Lin, D., & Chen, H. (2022). Essential-oil capsule preparation and its application in food preservation: A review. Food Reviews International, 1–35. https://doi.org/10.1080/87559129.2021.2021934

  • Yoksan, R., Jirawutthiwongchai, J., & Arpo, K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids and Surfaces B: Biointerfaces, 76(1), 292–297. https://doi.org/10.1016/j.colsurfb.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  • Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3), 204–226. https://doi.org/10.1002/cben.201400025

    Article  Google Scholar 

  • Zhu, D., Guo, R., Li, W., Song, J., & Cheng, F. (2019). Improved postharvest preservation effects of Pholiota nameko mushroom by sodium alginate–based edible composite coating. Food and Bioprocess Technology, 12(4), 587–598. https://doi.org/10.1007/s11947-019-2235-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Bijendra Kumar Singh is grateful to Head, Department of Botany, and Principal of Feroze Gandhi College, Raebareli, Uttar Pradesh, India for kind support. Authors are thankful to Head and Coordinator, CAS, Department of Botany, ISLS, for providing laboratory facilities, and Central Instrument Facility, Indian Institute of Technology, Banaras Hindu University, Varanasi for SEM, FTIR and XRD analysis.

Funding

Bijendra Kumar Singh is thankful to the Council of Scientific and Industrial Research (CSIR) (grant no.: 09/013(0920)/2019-EMR-I), New Delhi, India for providing research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Bijendra Kumar Singh: conceptualization, methodology, writing original draft, data curation, and funding acquisition. Shikha Tiwari: data curation. Akash Maurya: data curation. Somenath Das: review and editing. Vipin Kumar Singh: review and editing. Nawal Kishore Dubey: supervision and writing—review and editing.

Corresponding author

Correspondence to Nawal Kishore Dubey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.K., Tiwari, S., Maurya, A. et al. Chitosan-Based Nanoencapsulation of Ocimum americanum Essential Oil as Safe Green Preservative Against Fungi Infesting Stored Millets, Aflatoxin B1 Contamination, and Lipid Peroxidation. Food Bioprocess Technol 16, 1851–1872 (2023). https://doi.org/10.1007/s11947-023-03008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03008-1

Keywords

Navigation