Skip to main content
Log in

Sonication as a Promising Technology for the Extraction of Triacylglycerols from Fruit Seeds—A Review

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Fruit seeds that are by-products of the fruit processing industry are a potential, economical but neglected source of oil. The extraction of oil from waste fruit seeds is not common, and ultrasound offers an effective, green, and environment friendly alternative extraction technology that can give a higher yield (%) in less time at mild operating conditions. Although ultrasound offers significant intensification benefits, its effect on the quality of oil extracted from fruit seeds needs to be evaluated and also compared with the traditional extraction process without ultrasound. The review provides the readers with in-depth knowledge about the use of ultrasound in the extraction of fruit seed oil including the mechanism involved, the lipid profile of various fruit seed oils, interactions of ultrasound and solvent, equipment for the application of ultrasound, the effect of operating conditions, and recommendations to minimize the negative effects of ultrasound on the quality of extracted oil followed by the path ahead for this technology development. It has been elucidated that the seeds of fruits contain oil rich in polyunsaturated and essential fatty acids, thus forming an important source. Ultrasound can be effectively applied for intensified extraction of oil based on the mechanism of rupturing of the cell wall and increased rate of mass transfer. Importantly, the composition and content of fatty acids along with the antifungal/antimicrobial and antioxidant characteristics are maintained based on optimum selection of operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data would be made available on request.

References

  • Abdelrahman, M. H., Hussain, R. O., Shaheed, D. S., Abukhader, M., & Khan, S. A. (2019). Gas chromatography-mass spectrometry analysis and in vitro biological studies on fixed oil isolated from the waste pits of two varieties of Olea europaea L. OCL - Oilseeds and Fats, Crops and Lipids, 26(4), 1–8. https://doi.org/10.1051/ocl/2019022

    Article  Google Scholar 

  • Abdualrahman, M. A. Y., Ma, H., Zhou, C., Yagoub, A. E. A., Ali, A. O., Tahir, H. E., & Wali, A. (2019). Postharvest physicochemical properties of the pulp and seed oil from Annona squamosa L.(Gishta) fruit grown in Darfur region, Sudan. Arabian Journal of Chemistry12(8), 4514-4521. https://doi.org/10.1016/j.arabjc.2016.07.008

  • Al-Dhabi, N. A., Ponmurugan, K., & Maran Jeganathan, P. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206–213. https://doi.org/10.1016/j.ultsonch.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  • Al‐Hamimi, S., & Turner, C. (2020). A fast and green extraction method for berry seed lipid extraction using CO2 expanded ethanol combined with sonication. European Journal of Lipid Science and Technology122(4). https://doi.org/10.1002/ejlt.201900283

  • Albergamo, A., Costa, R., & Dugo, G. (2020). Cold pressed lemon (Citrus limon) seed oil. Elsevier Inc. https://doi.org/10.1016/b978-0-12-818188-1.00014-1

    Book  Google Scholar 

  • Al-Naqeb, G., Fiori, L., Ciolli, M., & Aprea, E. (2021). Prickly Pear Seed Oil Extraction, Chemical Characterization and Potential Health Benefits. Molecules26(16). https://doi.org/10.3390/molecules26165018

  • Alves, E., Rey, F., da Costa, E., Moreira, A., Pato, L., Pato, L., Domingues, M., & Domingues, P. (2018). Olive (Olea europaea L. cv. Galega vulgar) seed oil: A first insight into the major lipid composition of a promising agro-industrial by-product at two ripeness stages. European Journal of Lipid Science and Technology, 1, 1–19.

    Google Scholar 

  • Amri, Z., Ben Hamida, S., Dbeibia, A., Ghorbel, A., Mahdhi, A., Znati, M., ... & Hammami, M. (2020). Physico-chemical Characterization and Antibacterial Activity of Ozonated Pomegranate Seeds Oil. Ozone: Science & Engineering42(6), 531-538. https://doi.org/10.1080/01919512.2020.1735993

  • Amri, Z., Lazreg-Aref, H., Mekni, M., El-Gharbi, S., Dabbaghi, O., Mechri, B., & Hammami, M. (2017). Oil characterization and lipids class composition of pomegranate seeds. BioMed research international2017https://doi.org/10.1155/2017/2037341

  • Anang, M. A., Oteng-Peprah, M., & Opoku-Boadu, K. (2019). Extraction and characterisation of african star apple (Chrysophyllum albidum) seed oil and the adsorptive properties of the fruit shell in Ghana. International Journal of Food Science, 2019(2), 1–8. https://doi.org/10.1155/2019/4959586

    Article  CAS  Google Scholar 

  • Anwar, F., Manzoor, M., Bukhari, I., & Aladedunye, F. (2014). Physico-chemical attributes of fruit seed oils from different varieties of peach and plum. Journal of Advances in Chemistry, 4(2), 384–392.

    Google Scholar 

  • Arain, S., Sherazi, S. T. H., Bhanger, M. I., Memon, N., Mahesar, S. A., & Rajput, M. T. (2012). Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics. Grasas y Aceites, 63(2), 175–183. https://doi.org/10.3989/gya.082811

    Article  CAS  Google Scholar 

  • Ariffin, A. A., Bakar, J., Tan, C. P., Rahman, R. A., Karim, R., & Loi, C. C. (2009). Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chemistry, 114(2), 561–564. https://doi.org/10.1016/j.foodchem.2008.09.108

    Article  CAS  Google Scholar 

  • Aruna, P., Venkataramanamma, D., Singh, A. K., & Singh, R. P. (2016). Health benefits of punicic acid: A review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 16–27. https://doi.org/10.1111/1541-4337.12171

    Article  CAS  PubMed  Google Scholar 

  • Atolani, O., Omere, J., Otuechere, C. A., & Adewuyi, A. (2012). Antioxidant and cytotoxicity effects of seed oils from edible fruits. Journal of Acute Disease, 1(2), 130–134. https://doi.org/10.1016/s2221-6189(13)60030-x

    Article  Google Scholar 

  • Awolu, O. O., & Manohar, B. (2019). Quantitative and qualitative characterization of mango kernel seed oil extracted using supercritical CO2 and solvent extraction techniques. Heliyon, 5(12), e03068. https://doi.org/10.1016/j.heliyon.2019.e03068

    Article  PubMed  PubMed Central  Google Scholar 

  • Aznar-Ramos, M. J., del Razola-Díaz, M., & C., Verardo, V., & Gómez-Caravaca, A. M. (2022). Comparison between ultrasonic bath and sonotrode extraction of phenolic compounds from mango peel by-products. Horticulturae, 8(11), 1014. https://doi.org/10.3390/horticulturae8111014

    Article  Google Scholar 

  • Baboli, Z. M., & Safe Kordi, A. A. (2010). Characteristics and composition of watermelon seed oil and solvent extraction parameters effects. JAOCS, Journal of the American Oil Chemists’ Society, 87(6), 667–671. https://doi.org/10.1007/s11746-010-1546-5

    Article  CAS  Google Scholar 

  • Barrales, F. M., Rezende, C. A., & Martínez, J. (2015). Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. Journal of Supercritical Fluids, 104, 183–192. https://doi.org/10.1016/j.supflu.2015.06.006

    Article  CAS  Google Scholar 

  • Belviranlı, B., Al‐Juhaimi, F., Özcan, M. M., Ghafoor, K., Babiker, E. E., & Alsawmahi, O. N. (2019). Effect of location on some physico‐chemical properties of prickly pear (Opuntia ficus‐indica L.) fruit and seeds. Journal of Food Processing and Preservation43(3), 1–9. https://doi.org/10.1111/jfpp.13896

  • Bhanger, M. I., Anwar, F., Memon, N., & Qadir, R. (2020). Cold pressed apricot (Prunus armeniaca L.) kernel oil. In Cold Pressed Oils. Elsevier Inc. https://doi.org/10.1016/b978-0-12-818188-1.00065-7

  • Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics sonochemistry70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293

  • Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Islam Sarker, M. Z., & Ganjloo, A. (2012). Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 17(10), 11748–11762. https://doi.org/10.3390/molecules171011748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodoira, R. (2019). Nutritional profile and nutraceutical components of olive (Oleeuropaea L .) seeds. Journal of Food Science and Technology, 56(September), 4359–4370. https://doi.org/10.1007/s13197-019-03904-5

  • Biswas, R., Ghosal, S., Chattopadhyay, A., & Datta, S. (2017). A comprehensive review on watermelon seed oil-an underutilized product. IOSR Journal of Pharmacy, 7(11), 1–07.

    Google Scholar 

  • Bouazzaoui, N., Bouajila, J., Camy, S., Mulengi, J. K., & Condoret, J. S. (2018). Fatty acid composition, cytotoxicity and anti-inflammatory evaluation of melon (Cucumis melo L. Inodorus) seed oil extracted by supercritical carbon dioxide. Separation Science and Technology53(16), 2622-2627. https://doi.org/10.1080/01496395.2018.1464579

  • Boukouada, M., & Yousfi, M. (2009). Phytochemical study of date seeds lipids of three fruits produced in Ouagrgla region. Annales De La Faculté Des Sciences Et Sciences De L’ingénieur, 1(3), 66–74.

    Google Scholar 

  • Boyapati, T., Rana, S. S., & Ghosh, P. (2022). Microwave-assisted extraction of dragon fruit seed oil: Fatty acid profile and functional properties. Journal of the Saudi Society of Agricultural Sciences, Xxxx. https://doi.org/10.1016/j.jssas.2022.08.001

    Article  Google Scholar 

  • Capar, T., Dedebas, T., Yalcin, H., & Ekici, L. (2021). Extraction method affects seed oil yield, composition, and antioxidant properties of European cranberrybush (Viburnum opulus). Industrial Crops and Products, 168, 113632. https://doi.org/10.1016/j.indcrop.2021.113632

    Article  CAS  Google Scholar 

  • Chanioti, S., & Tzia, C. (2017). Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT, 79, 178–189. https://doi.org/10.1016/j.lwt.2017.01.029

    Article  CAS  Google Scholar 

  • Chen, F., Zhang, Q., Liu, J., Gu, H., & Yang, L. (2017). An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique. Ultrasonics Sonochemistry, 37, 267–278. https://doi.org/10.1016/j.ultsonch.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Zhang, M., & Yang, C. H. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics sonochemistry63, 104953. https://doi.org/10.1016/j.ultsonch.2019.104953

  • Chen, Y., Chen, Y., Shi, Y., Ma, C., Wang, X., Li, Y., Miao, Y., Chen, J., & Li, X. (2016). Antitumor activity of Annona squamosa seed oil. Journal of Ethnopharmacology, 193, 362–367. https://doi.org/10.1016/j.jep.2016.08.036

    Article  CAS  PubMed  Google Scholar 

  • Choe, U., Childs, H., Zeng, M., Zheng, W., Zhu, H., Zhu, L., Xie, Z., Gao, B., & Yu, L. (2022). Value-added utilization of fruit seed oils for improving human health: A progress review. ACS Food Science & Technology. https://doi.org/10.1021/acsfoodscitech.2c00120

    Article  Google Scholar 

  • Clodoveo, M. L., Paduano, A., Di Palmo, T., Crupi, P., Moramarco, V., Distaso, E., Tamburrano, P., Amirante, R., Sacchi, R., Corbo, F., & Pesce, V. (2017). Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis. Ultrasonics Sonochemistry, 37, 169–181. https://doi.org/10.1016/j.ultsonch.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  • Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15(5), 898–902. https://doi.org/10.1016/j.ultsonch.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  • Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics sonochemistry20(4), 1076-1080. https://doi.org/10.1016/j.ultsonch.2012.12.002

  • Dabbour, M., He, R., Ma, H., & Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41(5), 1–11. https://doi.org/10.1111/jfpe.12799

    Article  CAS  Google Scholar 

  • Dąbrowski, G., Czaplicki, S., & Konopka, I. (2020). Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT134, 110167. https://doi.org/10.1016/j.lwt.2020.110167

  • Dash, D. R., Pathak, S. S., & Pradhan, R. C. (2021). Extraction of oil from Terminalia chebula kernel by using ultrasound technology: Influence of process parameters on extraction kinetics. Industrial Crops and Products, 171(July), 113893. https://doi.org/10.1016/j.indcrop.2021.113893

    Article  CAS  Google Scholar 

  • Date, A., Phoenix, P., Seed, L., Harkat, H., Bousba, R., Benincasa, C., Atrouz, K., & Gültekin-özgüven, M. (2022). Assessment of biochemical composition and antioxidant properties of assessment of biochemical composition and antioxidant properties of Algerian date palm ( Phoenix dactylifera L .) Seed Oil. Plants, 11, 381. https://doi.org/10.3390/plants11030381

  • Deng, Y., Wang, W., Zhao, S., Yang, X., Xu, W., Guo, M., ... & Liu, D. (2022). Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies–A review. Trends in Food Science & Technology, 122, 83–96. https://doi.org/10.1016/j.tifs.2022.01.034

  • Domínguez, R., Zhang, L., Rocchetti, G., Lucini, L., Pateiro, M., Munekata, P. E., & Lorenzo, J. M. (2020). Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food chemistry330, 127266. https://doi.org/10.1016/j.foodchem.2020.127266

  • Dulf, F. V., Oroian, I., Vodnar, D. C., Socaciu, C., & Pintea, A. (2013). Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two Sambucus species (S. nigra L. and S. ebulus L.). Molecules, 06(18), 11768–11782. https://doi.org/10.3390/molecules181011768

  • Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35, 100547. https://doi.org/10.1016/j.fbio.2020.100547

    Article  CAS  Google Scholar 

  • Eddahhaoui, F. Z., Boudalia, M., Harhar, H., Chahboun, N., Tabyaoui, M., Guenbour, A., Zarrouk, A., & Bellaouchou, A. (2022). Effect of the extraction technique on the bioactive compounds and the antioxidant capacity of the Chamaerops humilis L. fruit (pulp and seeds). Chemical Data Collections, 40. https://doi.org/10.1016/j.cdc.2022.100882

  • Fazio, A., Plastina, P., Meijerink, J., Witkamp, R. F., & Gabriele, B. (2013). Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: Fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chemistry, 140(4), 817–824. https://doi.org/10.1016/j.foodchem.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, D. F., Barin, J. S., Binello, A., Veselov, V. V., & Cravotto, G. (2019). Highly efficient pumpkin-seed extraction with the simultaneous recovery of lipophilic and hydrophilic compounds. Food and Bioproducts Processing, 117, 224–230. https://doi.org/10.1016/j.fbp.2019.07.014

    Article  CAS  Google Scholar 

  • Ferrentino, G., Giampiccolo, S., Morozova, K., Haman, N., Spilimbergo, S., & Scampicchio, M. (2020). Supercritical fluid extraction of oils from apple seeds: Process optimization, chemical characterization and comparison with a conventional solvent extraction. Innovative Food Science and Emerging Technologies, 64, 102428. https://doi.org/10.1016/j.ifset.2020.102428

    Article  CAS  Google Scholar 

  • Fonseca, A. M. A., Geraldi, M. V., Junior, M. R. M., Silvestre, A. J. D., & Rocha, S. M. (2022). Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Research International, 160. https://doi.org/10.1016/j.foodres.2022.111665

  • Fu, X., Belwal, T., Cravotto, G., & Luo, Z. (2020). Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrasonics Sonochemistry, 60, 104726. https://doi.org/10.1016/j.ultsonch.2019.104726

    Article  CAS  PubMed  Google Scholar 

  • Garrido, G., Chou, W. H., Vega, C., Goïty, L., & Valdés, M. (2019). Influence of extraction methods on fatty acid composition, total phenolic content and antioxidant capacity of Citrus seed oils from the Atacama Desert, Chile. Journal of Pharmacy and Pharmacognosy Research, 7(6), 389–407.

    CAS  Google Scholar 

  • González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - A response surface approach. Ultrasonics Sonochemistry, 21(6), 2176–2184. https://doi.org/10.1016/j.ultsonch.2014.01.021

  • Górnaś, P., Rudzinska, M., & Soliven, A. (2017). Industrial by-products of plum Prunus domestica L. and Prunus cerasifera Ehrh. as potential biodiesel feedstock : Impact of variety. Industrial Crops and Products, 100, 77–84. https://doi.org/10.1016/j.indcrop.2017.02.014

    Article  CAS  Google Scholar 

  • Górnaś, P., & Rudzińska, M. (2016). Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Industrial Crops and Products, 83, 329–338. https://doi.org/10.1016/j.indcrop.2016.01.021

    Article  CAS  Google Scholar 

  • Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Seglina, D. (2016). Chemical composition of seed oils recovered from different pear (Pyrus communis L.) cultivars. JAOCS, Journal of the American Oil Chemists’ Society, 93(2), 267–274. https://doi.org/10.1007/s11746-015-2768-3

  • Górnaś, P., Rudzińskab, M., & Anna Grygierb, G. L. (2019). Diversity of oil yield, fatty acids, tocopherols, tocotrienols, and sterols in the seeds of nineteen interspecific grapes crosses. Journal of the Science of Food and Agriculture, 99(5), 2078. https://doi.org/10.1002/jsfa.9400

    Article  CAS  PubMed  Google Scholar 

  • Górnaś, P., Rudzińska, M., & Segliņa, D. (2014). Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Industrial Crops and Products, 60, 86–91. https://doi.org/10.1016/j.indcrop.2014.06.003

    Article  CAS  Google Scholar 

  • Goula, A. M. (2014). Ultrasound-assisted extraction of pomegranate seed oil - Kinetic modeling. Journal of Food Engineering, 117(4), 492–498. https://doi.org/10.1016/j.jfoodeng.2012.10.009

    Article  Google Scholar 

  • Gustinelli, G., Eliasson, L., Svelander, C., Alminger, M., & Ahrné, L. (2018a). Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: Fatty acid composition and antioxidant activity. Journal of Supercritical Fluids, 135(November 2017), 91–97. https://doi.org/10.1016/j.supflu.2018a.01.002

  • Gustinelli, G., Eliasson, L., Svelander, C., Alminger, M., & Ahrné, L. (2018b). Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: Fatty acid composition and antioxidant activity. The Journal of Supercritical Fluids135, 91-97. https://doi.org/10.1016/j.supflu.2018b.01.002

  • Habibnia, M., Ghavami, M., Ansaripour, M., & Vosough, S. (2012). Chemical evaluation of oils extracted from five different varieties of iranian pomegranate seeds. Journal of Food Biosciences and Technology, 2, 35–40.

    Google Scholar 

  • Harbeoui, H., Bettaieb, I., Ines, R., Wannes, W. A., Zemni, H., Zoghlami, N., Akhtar, N., Riadh, K., Moufida, K., & Tounsi, S. (2018). Biochemical characterization and antioxidant activity of grape ( Vitis vinifera L .) seed oils from nine Tunisian varieties. Journal of Food Biochemistry, 1–12. https://doi.org/10.1111/jfbc.12595

  • Hashemi, S. M. B., Khaneghah, A. M., Barba, F. J., & José M. Lorenzo, (2013). Characteristics of wild pear (Pyrus glabra Boiss) seed oil and its oil-in-water emulsions: A novel source of edible oil. European Journal of Lipid Science and Technology, 1–27.

  • Helbig, D., Böhm, V., Wagner, A., Schubert, R., & Jahreis, G. (2008). Berry seed press residues and their valuable ingredients with special regard to black currant seed press residues. Food Chemistry, 111(4), 1043–1049. https://doi.org/10.1016/j.foodchem.2008.05.017

    Article  CAS  Google Scholar 

  • Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., & Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  • Hou, K., Yang, X., Bao, M., Chen, F., Tian, H., & Yang, L. (2018). Composition, characteristics and antioxidant activities of fruit oils from Idesia polycarpa using homogenate-circulating ultrasound-assisted aqueous enzymatic extraction. Industrial Crops and Products, 117, 205–215. https://doi.org/10.1016/j.indcrop.2018.03.001

    Article  CAS  Google Scholar 

  • Huo, K., Shui, L., Mai, Y., Zhou, N., Liu, Y., Zhang, C., & Niu, J. (2020). Effects of exogenous abscisic acid on oil content, fatty acid composition, biodiesel properties and lipid components in developing Siberian apricot (Prunus sibirica) seeds. Plant Physiology and Biochemistry, 154, 260–267. https://doi.org/10.1016/j.plaphy.2020.06.020

    Article  CAS  PubMed  Google Scholar 

  • Hussain, A., Kausar, T., Sehar, S., Sarwar, A., Haseeb, A., Abdullah, M., Noreen, S., Rafique, A., Iftikhar, K., Yousaf, M., Aslam, J., & Abid, M. (2022). A comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chemistry Advances, 1, 100067. https://doi.org/10.1016/j.focha.2022.100067

    Article  Google Scholar 

  • Ibironke, A. A. (2009). Comparative study of the fatty acid composition of some seed oils from Nigeria. The African Journal of Plant Science and Biotechnology, 3(1), 59–62.

    Google Scholar 

  • Ido, A. L., de Luna, M. D. G., Capareda, S. C., Maglinao, A. L., & Nam, H. (2018). Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction. Energy, 157, 949–956. https://doi.org/10.1016/j.energy.2018.04.171

    Article  CAS  Google Scholar 

  • Iha, O. K., Martins, G. B. C., Ehlert, E., Montenegro, M. A., Sucupira, R. R., & Suarez, P. A. Z. (2018). Extraction and characterization of passion fruit and guava oils from industrial residual seeds and their application as biofuels. Journal of the Brazilian Chemical Society, 29(10), 2089–2095. https://doi.org/10.21577/0103-5053.20180083

  • Irshad, Z., Hanif, M. A., Ayub, M. A., Jilani, M. I., & Tavallali, V. (2019). Guava. In Medicinal plants of South Asia: Novel sources for drug discovery, 341–354. https://doi.org/10.1016/B978-0-08-102659-5.00026-4

  • Ispiryan, A., Viškelis, J., & Viškelis, P. (2021). Red raspberry (Rubus idaeus l.) seed oil: A review. Plants, 10(5). https://doi.org/10.3390/plants10050944

  • Jadhav, H. B., & Annapure, U. S. (2022). Triglycerides of medium-chain fatty acids: A concise review. Journal of Food Science and Technology, 0123456789, 1–11. https://doi.org/10.1007/s13197-022-05499-w

    Article  CAS  Google Scholar 

  • Jadhav, H. B., Gogate, P. R., Waghmare, J. T., & Annapure, U. S. (2021). Ultrasonics sonochemistry intensified synthesis of palm olein designer lipids using sonication. Ultrasonics Sonochemistry, 73, 105478. https://doi.org/10.1016/j.ultsonch.2021.105478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahurul, M. H. A., Patricia, M., Shihabul, A., Norazlina, M. R., Ramlah George, M. R., Noorakmar, A. W., Lee, J. S., Jumardi, R., Jinap, S., & Zaidul, I. S. M. (2021). A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. Food Bioscience, 41, 101000. https://doi.org/10.1016/j.fbio.2021.101000

  • Jaih, A. A. M., Rahman, R. A., Razis, A. F. A., Ariffin, A. A., Al-Awaadh, A., & Suleiman, N. (2019). Fatty acid, triacylglycerol composition and antioxidant properties of date seed oil. International Food Research Journal, 26(2), 517–527.

    Google Scholar 

  • Juhaimi, F. Al, Ghafoor, K., Uslu, N., Mohamed Ahmed, I. A., Babiker, E. E., Özcan, M. M., & Fadimu, G. J. (2020). The effect of harvest times on bioactive properties and fatty acid compositions of prickly pear (Opuntia ficus-barbarica A. Berger) fruits. Food Chemistry, 303, 125387. https://doi.org/10.1016/j.foodchem.2019.125387

  • Kalamara, E., Goula, A. M., & Adamopoulos, K. G. (2015). An integrated process for utilization of pomegranate wastes - Seeds. Innovative Food Science and Emerging Technologies, 27, 144–153. https://doi.org/10.1016/j.ifset.2014.12.001

    Article  CAS  Google Scholar 

  • Kaseke, T., Opara, U. L., & Fawole, O. A. (2020). Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Heliyon, 6(9), e04962. https://doi.org/10.1016/j.heliyon.2020.e04962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT, 105, 182–189. https://doi.org/10.1016/j.lwt.2019.01.060

    Article  CAS  Google Scholar 

  • Khadhraoui, B., Fabiano-Tixier, A.-S., Robinet, P., Imbert, R., & Chemat, F. (2019). Ultrasound technology for food processing, preservation, and extraction. In Green Food Processing Techniques, 23–56. https://doi.org/10.1016/b978-0-12-815353-6.00002-1

  • Kittiphoom, S. (2012). Utilization of mango seed. International Food Research Journal, 19(4), 1325–1335.

    CAS  Google Scholar 

  • Kumar, M., Kapoor, S., Dhumal, S., Tkaczewska, J., Changan, S., Saurabh, V., Mekhemar, M., Radha, Rais, N., Satankar, V., Pandiselvam, R., Sayed, A. A. S., Senapathy, M., Anitha, T., Singh, S., Tomar, M., Dey, A., Zengin, G., Amarowicz, R., & Jyoti Bhuyan, D. (2022). Guava (Psidium guajava L.) seed: A low-volume, high-value byproduct for human health and the food industry. Food Chemistry, 386, 132694. https://doi.org/10.1016/j.foodchem.2022.132694

  • Lamine, M., Gargouri, M., Zohra, F., & Ahmed, R. (2019). Authentication of citrus fruits through a comprehensive fatty acid profiling and health lipid indices : A nutraceutical perspectives. Journal of Food Measurement and Characterization, 133(4), 1–10. https://doi.org/10.1007/s11694-019-00141-4

    Article  Google Scholar 

  • Lee, W. J., Lee, M. H., & Su, N. W. (2011). Characteristics of papaya seed oils obtained by extrusion-expelling processes. Journal of the Science of Food and Agriculture, 91(13), 2348–2354. https://doi.org/10.1002/jsfa.4466

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. Y., Tang, T. K., Chan, E. S., Phuah, E. T., Lai, O. M., Tan, C. P., ... & Tan, J. S. (2022). Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications–a review. Critical reviews in food science and nutrition, 1-17. https://doi.org/10.1080/10408398.2021.1873729

  • Leong, H. J., & Oh, S. (2018). Preparation of antibacterial TiO2 particles by hybridization with azelaic acid for applications in cosmetics. Journal of Industrial and Engineering Chemistry, 66, 242–247. https://doi.org/10.1016/j.jiec.2018.05.035

    Article  CAS  Google Scholar 

  • Leong, T., Ashokkumar, M., & Sandra, K. (2011). The fundamentals of power ultrasound - A review. Acoustics Australia, 39(2), 54–63.

    Google Scholar 

  • Leong, T. S. H., Martin, G. J. O., & Ashokkumar, M. (2017). Ultrasonic encapsulation – A review. Ultrasonics Sonochemistry, 35, 605–614. https://doi.org/10.1016/j.ultsonch.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Zhang, Z., He, D., Xia, Y., Liu, Q., & Li, X. (2017). Ultrasound-assisted aqueous enzymatic extraction of oil from perilla seeds and determination of its physicochemical properties, fatty acid composition and antioxidant activity. Food Science and Technology (brazil), 37, 71–77. https://doi.org/10.1590/1678-457X.29116

    Article  Google Scholar 

  • Liao, J., Guo, Z., & Yu, G. (2021). Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells. Ultrasonics Sonochemistry, 76, 105661. https://doi.org/10.1016/j.ultsonch.2021.105661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, J., Qu, B., Liu, D., & Zheng, N. (2015). New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency. Ultrasonics Sonochemistry, 27, 110–116. https://doi.org/10.1016/j.ultsonch.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  • Liao, J., Zheng, N., & Qu, B. (2016). An improved ultrasonic-assisted extraction method by optimizing the ultrasonic frequency for enhancing the extraction efficiency of lycopene from tomatoes. Food Analytical Methods, 9(8), 2288–2298. https://doi.org/10.1007/s12161-016-0419-4

    Article  Google Scholar 

  • Liaotrakoon, W., De Clercq, N., Van Hoed, V., & Dewettinck, K. (2013). Dragon fruit (Hylocereus spp.) seed oils: Their characterization and stability under storage conditions. JAOCS, Journal of the American Oil Chemists’ Society, 90(2), 207–215. https://doi.org/10.1007/s11746-012-2151-6

  • Lieb, V. M., Schuster, L. K., Kronmüller, A., Schmarr, H. G., Carle, R., & Steingass, C. B. (2019). Fatty acids, triacylglycerols, and thermal behaviour of various mango (Mangifera indica L.) kernel fats. Food Research International, 116, 527–537. https://doi.org/10.1016/j.foodres.2018.08.070

    Article  CAS  PubMed  Google Scholar 

  • Lieu, D. (2010). Ultrasound physics and instrumentation for pathologists. Archives of Pathology and Laboratory Medicine, 134(10), 1541–1556. https://doi.org/10.5858/2009-0730-ra.1

    Article  PubMed  Google Scholar 

  • Liu, N., Ren, G., & Faiza, M. (2022a). Comparison of conventional and green extraction methods on oil yield, physicochemical properties, and lipid compositions of pomegranate seed oil. Journal of Food Composition and Analysis, 114, 104747. https://doi.org/10.1016/j.jfca.2022.104747

    Article  CAS  Google Scholar 

  • Liu, N., Ren, G., Faiza, M., Li, D., Cui, J., Zhang, K., & Yao, X. (2022b). Comparison of conventional and green extraction methods on oil yield, physicochemical properties, and lipid compositions of pomegranate seed oil. Journal of Food Composition and Analysis, 114, 104747. https://doi.org/10.1016/j.jfca.2022.104747

    Article  CAS  Google Scholar 

  • Liu, X., Ou, H., Xiang, Z., & Gregersen, H. (2020). Ultrasound pretreatment combined with supercritical CO2 extraction of Iberis amara seed oil. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100265. https://doi.org/10.1016/j.jarmap.2020.100265

    Article  Google Scholar 

  • Liu, Y., Jin, Q., Shan, L., Liu, Y., Shen, W., & Wang, X. (2008). The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 15(4), 402–407. https://doi.org/10.1016/j.ultsonch.2007.09.013

    Article  CAS  PubMed  Google Scholar 

  • Long, J., & jing, Fu, Y. jie, Zu, Y. gang, Li, J., Wang, W., Gu, C. B, & Luo, M. (2011). Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes. Bioresource Technology, 102(21), 9991–9996. https://doi.org/10.1016/j.biortech.2011.07.104

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., Yang, P., Chen, T., Shen, Y., Yao, Q., & Yan, J. (2020). Changes in biological activities after olive oil, pomegranate seed oil, and grape seed oil were formulated into self-nanoemulsifying systems. Journal of Oleo Science, 69(2), 161–166. https://doi.org/10.5650/jos.ess19255

    Article  CAS  PubMed  Google Scholar 

  • Maestri, D., Barrionuevo, D., Bodoira, R., Zafra, A., Jiménez-López, J., & Alché, J. D. D. (2019). Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. Journal of food science and technology56(9), 4359-4370. https://doi.org/10.1007/s13197-019-03904-5

  • Malacrida, C. R., Kimura, M., & Jorge, N. (2012). Phytochemicals and antioxidant activity of citrus seed oils. Food Science and Technology Research, 18(3), 399–404.

    Article  Google Scholar 

  • Malacrida, C. R., & Jorge, N. (2012). Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): Physical and chemical characteristics. Brazilian Archives of Biology and Technology, 55(1), 127–134. https://doi.org/10.1590/S1516-89132012000100016

  • Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection, 113, 68–77. https://doi.org/10.1016/j.psep.2017.09.016

    Article  CAS  Google Scholar 

  • Maria, S., Natalia, C., & Francisco, S. (2020). Advanced extraction of lipids with DHA from Isochrysis galbana with enzymatic pre-treatment combined with pressurized liquids and ultrasound assisted extractions. Molecules (Basel, Switzerland).

  • Marić, B., Pavlić, B., Čolović, D., Abramović, B., Zeković, Z., Bodroža-Solarov, M., ... & Teslić, N. (2020). Recovery of high-content ω–3 fatty acid oil from raspberry (Rubus idaeus L.) seeds: Chemical composition and functional quality. LWT130, 109627. https://doi.org/10.1016/j.lwt.2020.109627

  • Mason, T. J., Cobley, A. J., Graves, J. E., & Morgan, D. (2013). New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrasonics Sonochemistry, 18(1), 226–230. https://doi.org/10.1016/j.ultsonch.2010.05.008

    Article  CAS  Google Scholar 

  • Matthäus, B., & Özcan, M. M. (2011). Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficus-indica L.) seed oils. Scientia Horticulturae, 131(1), 95–98. https://doi.org/10.1016/j.scienta.2011.09.027

  • Matthäus, B., & Özcan, M. M. (2015). Oil content, fatty acid composition and distributions of vitamin-E-active compounds of some fruit seed oils. Antioxidants, 4(1), 124–133. https://doi.org/10.3390/antiox4010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metherel, A. H., Taha, A. Y., Izadi, H., & Stark, K. D. (2009). The application of ultrasound energy to increase lipid extraction throughput of solid matrix samples (flaxseed). Prostaglandins Leukotrienes and Essential Fatty Acids, 81(5–6), 417–423. https://doi.org/10.1016/j.plefa.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  • Michalak, M., & Kiełtyka-Dadasiewicz, A. (2018). Oils from fruit seeds and their dietetic and cosmetic significance. Herba Polonica, 64(4), 63–70. https://doi.org/10.2478/hepo-2018-0026

    Article  Google Scholar 

  • Mohammadpour, H., Sadrameli, S. M., Eslami, F., & Asoodeh, A. (2019). Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Industrial Crops and Products, 131, 106–116. https://doi.org/10.1016/j.indcrop.2019.01.030

  • Ojha, K. S., Aznar, R., O’Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC - Trends in Analytical Chemistry, 122, 115663. https://doi.org/10.1016/j.trac.2019.115663

    Article  CAS  Google Scholar 

  • Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/j.ultsonch.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  • Okan, O. T., Kilic, A., Onaran, A., Öz, M., & Deniz, İ. (2020). Determination of chemical composition, antioxidant and antifungal properties of pomegranate (Punica granatum L.) and Parsley (Petroselinum crispum) seed oil produced in industrial scale. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 21(2), 143–153. https://doi.org/10.17474/artvinofd.683260

  • Pacetti, D., Boselli, E., Lucci, P., & Frega, N. G. (2007). Simultaneous analysis of glycolipids and phospholids molecular species in avocado (Persea americana Mill) fruit. Journal of Chromatography A, 1150(1–2), 241–251. https://doi.org/10.1016/j.chroma.2006.10.022

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365–372. https://doi.org/10.1016/j.ultsonch.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  • Panadare, D. C., Gondaliya, A., & Rathod, V. K. (2020). Comparative study of ultrasonic pretreatment and ultrasound assisted three phase partitioning for extraction of custard apple seed oil. Ultrasonics Sonochemistry, 61, 104821. https://doi.org/10.1016/j.ultsonch.2019.104821

  • Paul, A., & Radhakrishnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science and Technology, 105, 273–283. https://doi.org/10.1016/j.tifs.2020.09.014

    Article  CAS  Google Scholar 

  • Pereira, C., Moura, A., & Neuza, J. (2013). Physico-chemical characterization of seed oils extracted from oranges (Citrus sinensis). Food Science and Technology Research, 19, 409–415.

  • Pereira, M. G., Hamerski, F., Andrade, E. F., de Scheer, A. P., & Corazza, M. L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. Journal of Supercritical Fluids, 128, 338–348. https://doi.org/10.1016/j.supflu.2017.03.021

    Article  CAS  Google Scholar 

  • Pereira, M. G., Maciel, G. M., Haminiuk, C. W. I., Bach, F., Hamerski, F., de Paula Scheer, A., & Corazza, M. L. (2019). Effect of extraction process on composition, antioxidant and antibacterial activity of oil from yellow passion fruit (Passiflora edulis Var. Flavicarpa) Seeds. Waste and Biomass Valorization, 10(9), 2611–2625. https://doi.org/10.1007/s12649-018-0269-y

  • Perrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., & Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58–65. https://doi.org/10.1016/j.ultsonch.2017.04.003

  • Petropoulos, S. A., Fernandes, Â., Arampatzis, D. A., Tsiropoulos, N. G., Petrović, J., Soković, M., Barros, L., & Ferreira, I. C. F. R. (2020). Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT, 123. https://doi.org/10.1016/j.lwt.2020.109099

  • Pieszka, M., Migdał, W., Gąsior, R., Rudzińska, M., Bederska-Łojewska, D., Pieszka, M., & Szczurek, P. (2015). Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. Journal of Chemistry2015https://doi.org/10.1155/2015/659541

  • Pinheiro, R. C., Ballesteros, L. F., Cerqueira, M. A., Rodrigues, A. M. C., Teixeira, J. A., & Silva, L. H. M. (2022). Peach palm (Bactris gasipaes Kunth) and mammee apple (Mammea americana L.) seeds: Properties and potential of application in industry. LWT, 170, 114089. https://doi.org/10.1016/j.lwt.2022.114089

  • Raihana, A. R. N., Marikkar, J. M. N., Amin, I., & Shuhaimi, M. (2015). A review on food values of selected tropical fruits seeds. International Journal of Food Properties, 18(11), 2380–2392. https://doi.org/10.1080/10942912.2014.980946

    Article  CAS  Google Scholar 

  • Rajendran, N., Gurunathan, B., & I., A. E. S. (2021). Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial Crops and Products, 162, 113273. https://doi.org/10.1016/j.indcrop.2021.113273

  • Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2019). Physicochemical, fatty acid and antioxidant properties of passion fruit (Passiflora Species) seed oil. Pakistan Journal of Nutrition, 18(5), 421–429. https://doi.org/10.3923/pjn.2019.421.429

    Article  CAS  Google Scholar 

  • Reátegui, J. L. P., da Fonseca Machado, A. P., Barbero, G. F., Rezende, C. A., & Martínez, J. (2014). Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. Journal of Supercritical Fluids, 94, 223–233. https://doi.org/10.1016/j.supflu.2014.07.019

    Article  CAS  Google Scholar 

  • Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2020). Cold pressed Cucumis melo L. seed oil. In Cold pressed oils. Elsevier Inc. https://doi.org/10.1016/b978-0-12-818188-1.00054-2

  • Richa, R., Kumar, R., Shukla, R., & Khan, K. (2020). Ultrasound assisted essential oil extraction technology: New boon in food industry. SKUAST Journal of Research, 22(2), 81–85.

    Google Scholar 

  • Riera, E., Blanco, A., García, J., Benedito, J., Mulet, A., Gallego-Juárez, J. A., & Blasco, M. (2010). High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Ultrasonics, 50(2), 306–309. https://doi.org/10.1016/j.ultras.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  • Rosa, A., Era, B., Masala, C., Nieddu, M., Scano, P., Fais, A., Porcedda, S., & Piras, A. (2019). Supercritical CO2 extraction of waste citrus seeds: Chemical composition, nutritional and biological properties of edible fixed oils. European Journal of Lipid Science and Technology, 121(7), 1–33. https://doi.org/10.1002/ejlt.201800502

    Article  CAS  Google Scholar 

  • Rudzińska, M., Górnaś, P., Raczyk, M., & Soliven, A. (2017). Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: The variety as a key factor. Natural Product Research, 31(1), 84–88. https://doi.org/10.1080/14786419.2015.1135146

  • Saini, R. D. (2017). Chemistry of oils & fats and their health effects. International Journal of Chemical Engineering Research, 9(1), 105–119. http://www.ripublication.com

  • Sallet, D., Souza, P. O., Fischer, L. T., Ugalde, G., Zabot, G. L., Mazutti, M. A., & Kuhn, R. C. (2019). Ultrasound-assisted extraction of lipids from Mortierella isabellina. Journal of Food Engineering, 242, 1–7. https://doi.org/10.1016/j.jfoodeng.2018.08.015

  • Samaram, S., Mirhosseini, H., Tan, C. P., & Ghazali, H. M. (2013). Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules, 18(10), 12474–12487. https://doi.org/10.3390/molecules181012474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samaram, S., Mirhosseini, H., Tan, C. P., & Ghazali, H. M. (2014). Ultrasound-assisted extraction and solvent extraction of papaya seed oil: Crystallization and thermal behavior, saturation degree, color and oxidative stability. Industrial Crops and Products, 52, 702–708. https://doi.org/10.1016/j.indcrop.2013.11.047

    Article  CAS  Google Scholar 

  • Samaram, S., Mirhosseini, H., Tan, C. P., Ghazali, H. M., Bordbar, S., & Serjouie, A. (2015). Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chemistry, 172, 7–17. https://doi.org/10.1016/j.foodchem.2014.08.068

    Article  CAS  PubMed  Google Scholar 

  • Sánchez, R. J., Fernández, M. B., & Nolasco, S. M. (2019). Canola oil with high antioxidant content obtained by combining emerging technologies: Microwave, ultrasound, and a green solvent. European Journal of Lipid Science and Technology, 121(11), 1–9. https://doi.org/10.1002/ejlt.201900152

    Article  CAS  Google Scholar 

  • Savic, I., Gajic, I. S., & Gajic, D. (2020). Physico-chemical properties and oxidative stability of fixed oil from plum seeds (Prunus domestica linn.). Biomolecules, 10(2). https://doi.org/10.3390/biom10020294

  • Seidi Damyeh, M., Niakousari, M., & Saharkhiz, M. J. (2016). Ultrasound pretreatment impact on Prangos ferulacea Lindl. and Satureja macrosiphonia Bornm. essential oil extraction and comparing their physicochemical and biological properties. Industrial Crops and Products, 87, 105–115. https://doi.org/10.1016/j.indcrop.2016.04.025

    Article  CAS  Google Scholar 

  • Senrayan, J., & Venkatachalam, S. (2020). Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds. Innovative Food Science and Emerging Technologies, 62, 102347. https://doi.org/10.1016/j.ifset.2020.102347

  • Sicaire, A. G., Vian, M. A., Fine, F., Carré, P., Tostain, S., & Chemat, F. (2016). Ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrasonics Sonochemistry, 31, 319–329. https://doi.org/10.1016/j.ultsonch.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  • Sipeniece, E., Mišina, I., Grygier, A., Qian, Y., Rudzińska, M., Kaufmane, E., Segliņa, D., Siger, A., & Górnaś, P. (2021). Impact of the harvest year of three cultivars of Japanese quince (Chaenomeles japonica) on the oil content and its composition. Scientia Horticulturae, 275. https://doi.org/10.1016/j.scienta.2020.109683

  • Stevanato, N., & da Silva, C. (2019). Radish seed oil: Ultrasound-assisted extraction using ethanol as solvent and assessment of its potential for ester production. Industrial Crops and Products, 132(February), 283–291. https://doi.org/10.1016/j.indcrop.2019.02.032

    Article  CAS  Google Scholar 

  • Sukor, N., Jusoh, R., Rahim, S. A., & Kamarudin, N. (2018). Ultrasound assisted methods for enhanced extraction of phenolic acids from Quercus Infectoria galls. Materials Today: Proceedings, 5(10), 21990–21999. https://doi.org/10.1016/j.matpr.2018.07.060

    Article  CAS  Google Scholar 

  • Sytar, O., Cai, Z., Brestic, M., Kumar, A., Prasad, M. N. V, Taran, N., Iryna, S., & Faculty, A. (2013). Quality evaluation of cold-pressed edible oils from Macedonia. October, 1–40.

  • Takenaga, F., Matsuyama, K., Abe, S., Torii, Y., & Itoh, S. (2008). Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan. Journal of Oleo Science, 57(11), 591–597. https://doi.org/10.5650/jos.57.591

    Article  CAS  PubMed  Google Scholar 

  • Tan, C. X., Chong, G. H., Hamzah, H., & Ghazali, H. M. (2018). Comparison of subcritical CO2 and ultrasound-assisted aqueous methods with the conventional solvent method in the extraction of avocado oil. Journal of Supercritical Fluids, 135, 45–51. https://doi.org/10.1016/j.supflu.2017.12.036

  • Tan, C. X., Tan, S. T., & Tan, S. S. (2020). An overview of papaya seed oil extraction methods. International Journal of Food Science and Technology, 55(4), 1506–1514. https://doi.org/10.1111/ijfs.14431

    Article  CAS  Google Scholar 

  • Tang, W., Wang, B., Wang, M., & Wang, M. (2021). Ultrasound-assisted extraction of Osmanthus fragrans fruit oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100331. https://doi.org/10.1016/j.jarmap.2021.100331

    Article  CAS  Google Scholar 

  • Tanveer, A., Farooq, U., Akram, K., Hayat, Z., Shafi, A., Nazar, H., & Ahmad, Z. (2015). Pomegranate extracts: A natural preventive measure against spoilage and pathogenic microorganisms. Food Reviews International, 31(1), 29–51. https://doi.org/10.1080/87559129.2014.961074

    Article  CAS  Google Scholar 

  • Tavares, G. R., Massa, T. B., Gonçalves, J. E., da Silva, C., & dos Santos, W. D. (2017). Assessment of ultrasound-assisted extraction of crambe seed oil for biodiesel synthesis by in situ interesterification. Renewable Energy, 111, 659–665. https://doi.org/10.1016/j.renene.2017.04.065

    Article  CAS  Google Scholar 

  • Thilakarathna, R. C. N., Siow, L. F., Tang, T. K., & Lee, Y. Y. (2022). A review on application of ultrasound and ultrasound assisted technology for seed oil extraction. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-022-05359-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Xu, Z., Zheng, B., & Martin Lo, Y. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1), 202–208. https://doi.org/10.1016/j.ultsonch.2012.07.010

  • Ulbright, T., & Southgate, D. (1991). Coronary heart disease: Seven dietary factors. The Lancet, 338(10), 985–992.

    Article  Google Scholar 

  • Uluata, S. (2016). Effect of extraction method on biochemical properties and oxidative stability of apricot seed oil. Akademik Gıda, 14(4), 333–340.

    Google Scholar 

  • Vasilica, L., Lacatusu, I., Oprea, O., Bordei, N., Bacalum, M., & Badea, N. (2020). Industrial crops & products azelaic acid-willow bark extract-panthenol – Loaded lipid nanocarriers improve the hydration effect and antioxidant action of cosmetic formulations. Industrial Crops & Products, 154, 112658. https://doi.org/10.1016/j.indcrop.2020.112658

    Article  CAS  Google Scholar 

  • Velickovic, D., Ristic, M., Karabegovic, I., Stojicevic, S., Nikolic, N., & Lazic, M. (2016). Plum (Prunus domestica) and walnut (Juglans regia): Volatiles and fatty oils. Advanced Technologies, 5(1), 10–16. https://doi.org/10.5937/savteh1601010v

    Article  Google Scholar 

  • Vroegrijk, I. O. C. M., Van Diepen, J. A., Berg, S. V., Den, W., & I., Keizer, H., Gambelli, L., Hontecillas, R., Bassaganya-riera, J., Zondag, G. C. M., Romijn, J. A., Havekes, L. M., & Voshol, P. J. (2011). Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food and Chemical Toxicology, 49(6), 1426–1430. https://doi.org/10.1016/j.fct.2011.03.037

    Article  CAS  PubMed  Google Scholar 

  • Walia, M., Rawat, K., Bhushan, S., Padwad, Y. S., & Singh, B. (2014). Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. Journal of the Science of Food and Agriculture, 94(5), 929–934. https://doi.org/10.1002/jsfa.6337

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Li, H., Zhao, H., Zhang, Y., Qiu, P., Li, J., & Wang, S. (2018a). Antidiabetic activity and chemical composition of Sanbai melon seed oil. Evidence-Based Complementary and Alternative Medicine, 5434156. https://doi.org/10.1155/2018a/5434156

  • Wang, Y., Li, R., Jiang, Z. T., Tan, J., Tang, S. H., Li, T. T., Liang, L. L., He, H. J., Liu, Y. M., Li, J. T., & Zhang, X. C. (2018b). Green and solvent-free simultaneous ultrasonic-microwave assisted extraction of essential oil from white and black peppers. Industrial Crops and Products, 114, 164–172. https://doi.org/10.1016/j.indcrop.2018b02.002

  • Wu, S., Tokuda, M., Kashiwagi, A., Henmi, A., Okada, Y., Tachibana, S., & Nomura, M. (2015). Evaluation of the fatty acid composition of the seeds of Mangifera indica L. and their application. Journal of Oleo Science, 64(5), 479–484. https://doi.org/10.5650/jos.ess14238

  • Yasamin, G., & Taghian Dinani, S. (2018). Optimization of ultrasound-assisted enzymatic extraction of walnut kernel oil using response surface methodology. Journal of Food Process Engineering, 41(5), 1–18. https://doi.org/10.1111/jfpe.12696

    Article  CAS  Google Scholar 

  • Yatipanthalawa, B., Li, W., Hill, D. R. A., Trifunovic, Z., Ashokkumar, M., Scales, P. J., & Martin, G. J. O. (2021). Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells (Navicula sp.). Journal of Colloid and Interface Science, 589, 65–76. https://doi.org/10.1016/j.jcis.2020.12.056

    Article  CAS  PubMed  Google Scholar 

  • Yoo, K. W., & Kim, J. H. (2018). Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnology and Bioprocess Engineering, 23(5), 532–540. https://doi.org/10.1007/s12257-018-0190-z

    Article  CAS  Google Scholar 

  • Yukui, R., Wenya, W., Rashid, F., & Qing, L. (2010). Fatty acids composition of apple and pear seed oils. International Journal of Food Properties, 12(4), 774–779. https://doi.org/10.1080/10942910802054320

    Article  CAS  Google Scholar 

  • Zeb, A., & Murkovic, M. (2011). Olive (Olea europaea L.) seeds, from chemistry to health benefits. In Nuts and seeds in health and disease prevention, 847–853. https://doi.org/10.1016/B978-0-12-375688-6.10100-8

  • Zhang, Z. S., Wang, L. J., Li, D., Jiao, S. S., Chen, X. D., & Mao, Z. H. (2010). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192–198. https://doi.org/10.1016/j.seppur.2008.01.014

    Article  CAS  Google Scholar 

  • Zhou, B., Wang, Y., Kang, J., Zhong, H., & Prenzler, P. D. (2016). The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. European Journal of Lipid Science and Technology, 118(2), 236–243. https://doi.org/10.1002/ejlt.201400545

  • Zhou, L., Jiang, B., Zhang, T., & Li, S. (2019). Ultrasound-assisted aqueous two-phase extraction of resveratrol from the enzymatic hydrolysates of Polygonum cuspidatum. Food Bioscience, 31(1800), 100442. https://doi.org/10.1016/j.fbio.2019.100442

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Harsh Jadhav is thankful to the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, for providing the DST INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Harsh B. Jadhav: methodology, original draft preparation. Irfan Raina: reviewing and editing. Parag R. Gogate: reviewing and editing, supervision. Uday S. Annapure: reviewing and editing, supervision. Federico Casanova: reviewing and editing.

Corresponding authors

Correspondence to Harsh B. Jadhav, Parag R. Gogate or Uday S. Annapure.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, H.B., Raina, I., Gogate, P.R. et al. Sonication as a Promising Technology for the Extraction of Triacylglycerols from Fruit Seeds—A Review. Food Bioprocess Technol 16, 1625–1651 (2023). https://doi.org/10.1007/s11947-022-02987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02987-x

Keywords

Navigation