Skip to main content
Log in

Extraction and Preconcentration of the Main Target Polyphenols from Empetrum nigrum by Freeze-Ultrasonic Thawing Method Based on Synthetic Gemini Surfactant Aqueous Systems

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Freeze-ultrasonic thawing extraction (FUTE) is a novel, green, and effective method for extracting bioactive compounds from plants, and the Gemini surfactant had the excellent properties especially for extracting hydrophobic and hydrophilic molecules. Therefore, the purpose of this study was to establish an effective method of synthetic Gemini surfactant aqueous system coupled with FUTE to extract the main individual polyphenols from the aerial parts of Empetrum nigrum. Based on identification of the polyphenols in the aerial parts of E. nigrum by ultra-high-performance liquid chromatography (UHPLC)–time of flight (TOF)–mass spectrometry (MS)/MS, the Gemini surfactant–N,Nʹ-bis(dodecyldimethyl)-1,4-butane dibromide (BBD)–FUTE technology was applied to extract the six main individual polyphenols. Under the optimum conditions, the extraction yields of neochlorogenic acid, catechin, rutin, hyperoside, quercetin, and guaijaverin were 8.48, 0.33, 4.23, 2.19, 1.12, and 0.32 mg/g, respectively, which were 1.01–1.96 and 1.15–2.39 times to those of ultrasonic-assisted extraction and freeze-thawing extraction methods, respectively. After cloud-point extraction, a preconcentration factor of 9.1 was obtained. All the results indicated that BBD-FUTE was a green and efficient method in the extraction of polyphenols from the aerial parts of E. nigrum. Therefore, it was suggested that the BBD-FUTE technology can be used as an alternative innovation method to effectively extract bioactive compounds from plant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data and material presented in this study will be made available on reasonable request.

Abbreviations

SE:

Solvent extraction

UAE:

Ultrasonic-assisted extraction

TX-100:

Triton X-100

CMC:

Critical micelle concentration

BBD:

N,Nʹ-Bis(dodecyldimethyl)-1,4-butane dibromide

FUTE:

Freeze-ultrasonic thawing extraction

CPE:

Cloud-point extraction

UHPLC-TOF-MS/MS:

Ultra-high-performance liquid chromatography–time of flight–mass spectrometry/mass spectrometry

LODs:

Limits of detection

LOQs:

Limits of quantification

RSD:

Relative standard deviation

ARA:

Arabinoside

FTE:

Freeze-thawing extraction

RT:

Retention time

PA:

Peak area

References

  • Bao, S., Wang, Q., Bao, W., & Ao, W. (2020). Structure elucidation and NMR assignments of a new dihydrochalcone from Empetrum nigrum subsp. asiaticum (Nakai ex H.Ito) Kuvaev. Natural Products Research, 34(7), 930–934. https://doi.org/10.1080/14786419.2018.1542390

  • Bettaieb Rebey, I., Bourgou, S., Ben Slimen Debez, I., Jabri Karoui, I., Hamrouni Sellami, I., Msaada, K., Limam, F., & Marzouk, B. (2011). Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food and Bioprocess Technology, 5(7), 2827–2836. https://doi.org/10.1007/s11947-011-0625-4

  • Bhagya Raj, G. V. S., & Dash, K. K. (2020). Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies. Ultrasonics Sonochemistry, 68, 105180. https://doi.org/10.1016/j.ultsonch.2020.105180

    Article  CAS  PubMed  Google Scholar 

  • Chung, M. Y., López-Pujol, J., Moon, M. O., Chung, J. M., Kim, C. S., Sun, B. Y., Kim, K. J., & Chung, M. G. (2012). Comparison of genetic diversity in the two arctic–alpine plants Diapensia lapponica var. obovata (Diapensiaceae) and Empetrum nigrum var. japonicum (Empetraceae) between Sakhalin in Russian Far East and Jeju Island in Korea, the southernmost edge of their distribution range. Population Ecology, 55(1), 159–172. https://doi.org/10.1007/s10144-012-0348-z

  • Davis, E. J., Spadoni Andreani, E., & Karboune, S. (2021). Production of extracts composed of pectic oligo/polysaccharides and polyphenolic compounds from cranberry pomace by microwave-assisted extraction process. Food and Bioprocess Technology, 14(4), 634–649. https://doi.org/10.1007/s11947-021-02593-3

    Article  CAS  Google Scholar 

  • de Souza, L. M., Cipriani, T. R., Iacomini, M., Gorin, P. A., & Sassaki, G. L. (2008). HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. Journal of Pharmaceutical and Biomedical Analysis, 47(1), 59–67. https://doi.org/10.1016/j.jpba.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  • Delgado, A. E., Zheng, L., & Sun, D.-W. (2008). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2(3), 263–270. https://doi.org/10.1007/s11947-008-0111-9

    Article  Google Scholar 

  • Doroshchuk, V. A., Levchik, V. M., & Mandzyuk, E. S. (2015). Cloud-point extraction preconcentration of sym-triazine herbicides to determination by gas chromatography. Journal of Analytical Chemistry, 70(2), 119–124. https://doi.org/10.1134/S106193481412003X

    Article  CAS  Google Scholar 

  • Drouet, S., Garros, L., Hano, C., Tungmunnithum, D., Renouard, S., Hagège, D., Maunit, B., & Lainé, É. (2018). A critical view of different botanical, molecular, and chemical techniques used in authentication of plant materials for cosmetic applications. Cosmetics, 5(2), 30. https://doi.org/10.3390/cosmetics5020030

    Article  CAS  Google Scholar 

  • Fang, N., Yu, S., & Prior, R. (2002). LC/MS/MS characterization of phenolic constituents in dried plums. Journal of Agricultural and Food Chemistry, 50(12), 3579–3585. https://doi.org/10.1021/jf0201327

    Article  CAS  PubMed  Google Scholar 

  • Feizi, N., Yamini, Y., Moradi, M., & Ebrahimpour, B. (2016). Nano-structured Gemini-based supramolecular solvent for the microextraction of cyhalothrin and fenvalerate. Journal of Separation Science, 39(17), 3400–3409. https://doi.org/10.1002/jssc.201600263

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Shi, Y. T., Miao, N., Xing, W. X., Yun, C., Wang, S. F., Wang, W. J., & Wang, H. M. (2022). A green ultrasound-assisted enzymatic extraction method for efficient extraction of total polyphenols from Empetrum nigrum and determination of its bioactivities. Journal of Industrial and Engineering Chemistry, 109, 559–567. https://doi.org/10.1016/j.jiec.2022.02.041

    Article  CAS  Google Scholar 

  • Gao, Y., Wang, S. F., Dang, S. K., Han, S. L., Yun, C., Wang, W. J., & Wang, H. M. (2021). Optimized ultrasound-assisted extraction of total polyphenols from Empetrum nigrum and its bioactivities. Journal of Chromatography B, 1173, 122699. https://doi.org/10.1016/j.jchromb.2021.122699

    Article  CAS  Google Scholar 

  • Guo, J., Miao, Z., Wan, J., & Guo, X. (2018). Pineapple peel bromelain extraction using Gemini surfactant-based reverse micelle-role of spacer of Gemini surfactant. Separation and Purification Technology, 190, 156–164. https://doi.org/10.1016/j.seppur.2017.08.051

    Article  CAS  Google Scholar 

  • Huang, Z., Cheng, C., Li, K., Zhang, S., Zhou, J., Luo, W., Liu, Z., Qin, W., Wang, H., Hu, Y., He, G., Yu, X., Qiu, T., & Fu, W. (2020). Reverse flotation separation of quartz from phosphorite ore at low temperatures by using an emerging Gemini surfactant as the collector. Separation and Purification Technology, 246, 116923. https://doi.org/10.1016/j.seppur.2020.116923

    Article  CAS  Google Scholar 

  • Huang, Z., Cheng, C., Liu, Z., Zeng, H., Feng, B., Zhong, H., Luo, W., Hu, Y., Guo, Z., He, G., & Fu, W. (2019). Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer. Journal of Cleaner Production, 221, 108–112. https://doi.org/10.1016/j.jclepro.2019.02.251

    Article  CAS  Google Scholar 

  • Hyun, T. K., Kim, H. C., Ko, Y. J., & Kim, J. S. (2016). Antioxidant, alpha-glucosidase inhibitory and anti-inflammatory effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum). Saudi Journal of Biological Sciences, 23(2), 181–188. https://doi.org/10.1016/j.sjbs.2015.02.008

  • Javed, M., Belwal, T., Ruyuan, Z., Xu, Y., Li, L., & Luo, Z. (2022). Optimization and mechanism of phytochemicals extraction from Camellia oleifera shells using novel biosurfactant nanobubbles solution coupled with ultrasonication. Food and Bioprocess Technology, 15(5), 1101–1114. https://doi.org/10.1007/s11947-022-02793-5

    Article  CAS  Google Scholar 

  • Jiang, L., Belwal, T., Huang, H., Ge, Z., Limwachiranon, J., Zhao, Y., Li, L., Ren, G., & Luo, Z. (2019). Extraction and characterization of phenolic compounds from bamboo shoot shell under optimized ultrasonic-assisted conditions: A potential source of nutraceutical compounds. Food and Bioprocess Technology, 12(10), 1741–1755. https://doi.org/10.1007/s11947-019-02321-y

    Article  CAS  Google Scholar 

  • Jurikova, T., Mlcek, J., Skrovankova, S., Balla, S., Sochor, J., Baron, M., & Sumczynski, D. (2016). Black crowberry (Empetrum nigrum L.) flavonoids and their health promoting activity. Molecules, 21(12), 21121685. https://doi.org/10.3390/molecules21121685

  • Laaksonen, O., Sandell, M., Järvinen, R., & Kallio, H. (2011). Orosensory contributing compounds in crowberry (Empetrum nigrum) press-byproducts. Food Chemistry, 124(4), 1514–1524. https://doi.org/10.1016/j.foodchem.2010.08.005

    Article  CAS  Google Scholar 

  • Lee, J., Ebeler, S. E., Zweigenbaum, J. A., & Mitchell, A. E. (2012). UHPLC-(ESI)QTOF MS/MS profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion. Journal of Agricultural and Food Chemistry, 60(34), 8510–8520. https://doi.org/10.1021/jf302637t

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Jean, S., Webster, D., Robichaud, G. A., Calhoun, L. A., Johnson, J. A., & Gray, C. A. (2015). Dibenz[b, f]oxepin and antimycobacterial chalcone constituents of Empetrum nigrum. Journal of Natural Products, 78(11), 2837–2840. https://doi.org/10.1021/acs.jnatprod.5b00627

    Article  CAS  PubMed  Google Scholar 

  • Materna, K., & Szymanowski, J. (2002). Separation of phenols from aqueous micellar solutions by cloud point extraction. Journal of Colloid and Interface Science, 255(1), 195–201. https://doi.org/10.1006/jcis.2002.8613

    Article  CAS  PubMed  Google Scholar 

  • Monger, F. M., & Littau, C. A. (1991). Gemini surfactants; Synthesis and properties. Journal of the American Chemical Society, 113(4), 1451–1452. https://doi.org/10.1021/ja00004a077

    Article  Google Scholar 

  • Oka, S., Kuniba, R., Tsuboi, N., Tsuchida, S., Ushida, K., Tomoshige, S., & Kuramochi, K. (2020). Isolation, synthesis, and biological activities of a bibenzyl from Empetrum nigrum var. japonicum. Bioscience, Biotechnology, and Biochemistry, 84(1), 31–36. https://doi.org/10.1080/09168451.2019.1662279

  • Park, S. Y., Lee, E. S., Han, S. H., Lee, H. Y., & Lee, S. (2012). Antioxidative effects of two native berry species, Empetrum nigrum var. japonicum K. Koch and Rubus buergeri Miq., from the Jeju island of Korea. Journal of Food Biochemistry, 36(6), 675–682. https://doi.org/10.1111/j.1745-4514.2011.00582.x

  • Peanparkdee, M., Yamauchi, R., & Iwamoto, S. (2017). Characterization of antioxidants extracted from Thai riceberry bran using ultrasonic-assisted and conventional solvent extraction methods. Food and Bioprocess Technology, 11(4), 713–722. https://doi.org/10.1007/s11947-017-2047-4

    Article  CAS  Google Scholar 

  • Ponkratova, A. O., Whaley, A. K., Balabas, O. A., Smirnov, S. N., Proksch, P., & Luzhanin, V. G. (2021). A new bibenzyl and 9,10-dihydrophenanthrene derivative from aerial parts of crowberry (Empetrum nigrum L.). Phytochemistry Letters, 42, 15–17. https://doi.org/10.1016/j.phytol.2021.01.001

    Article  CAS  Google Scholar 

  • Ponkratova, A. O., Whaley, A. K., Orlova, A. A., Smirnov, S. N., Serebryakov, E. B., Proksch, P., & Luzhanin, V. G. (2022). A new dimethoxy dihydrochalcone isolated from the shoots of Empetrum nigrum L. Natural Products Research, 36(20), 5142–5147. https://doi.org/10.1080/14786419.2021.1920584

    Article  CAS  Google Scholar 

  • Sahin, S., & Samli, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20(1), 595–602. https://doi.org/10.1016/j.ultsonch.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., Zhu, D., Huai, W., Zhang, W., Fu, C., Xie, X., Quan, S., & Fan, H. (2017). Simultaneous extraction and separation of flavonoids and alkaloids from Crotalaria sessiliflora L. by microwave-assisted cloud-point extraction. Separation and Purification Technology, 175, 266–273. https://doi.org/10.1016/j.seppur.2016.11.038

    Article  CAS  Google Scholar 

  • Tian, Y., Wei, R., Cai, B., Dong, J., Deng, B., & Xiao, Y. (2016). Cationic Gemini pyrrolidinium surfactants based sweeping-micellar electrokinetic chromatography for simultaneous detection of nine organic pollutants in environmental water. Journal of Chromatography A, 1475, 95–101. https://doi.org/10.1016/j.chroma.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  • Toiron, C., Rumbero, A., Wollenweber, E., Arriaga, F. J., & Bruix, M. (1995). A new skeletal triterpenoid isolated from Empetrum nigrum. Tetrahedron Letters, 36(36), 6559–6562. https://doi.org/10.1016/0040-4039(95)01286-Q

    Article  CAS  Google Scholar 

  • Wang, J., Lu, D., Zhao, H., Jiang, B., Wang, J., Ling, X., Chai, H., & Ouyang, P. (2010). Discrimination and classification of tobacco wastes by identification and quantification of polyphenols with LC-MS/MS. Journal of the Serbian Chemical Society, 75(7), 875–891. https://doi.org/10.2298/JSC091109055W

    Article  CAS  Google Scholar 

  • Xi, J., & Wang, B. (2012). Optimization of ultrahigh-pressure extraction of polyphenolic antioxidants from green tea by response surface methodology. Food and Bioprocess Technology, 6(9), 2538–2546. https://doi.org/10.1007/s11947-012-0891-9

    Article  CAS  Google Scholar 

  • Xu, Z., Sun, D.-W., & Zhu, Z. (2015). Potential life cycle carbon savings for immersion freezing of water by power ultrasound. Food and Bioprocess Technology, 9(1), 69–80. https://doi.org/10.1007/s11947-015-1633-6

    Article  Google Scholar 

  • Xue, C., Guo, J., Qian, D., Duan, J. A., Shang, E., Shu, Y., & Lu, Y. (2011). Identification of the potential active components of Abelmoschus manihot in rat blood and kidney tissue by microdialysis combined with ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Chromatography B, 879(5–6), 317–325. https://doi.org/10.1016/j.jchromb.2010.12.016

    Article  CAS  Google Scholar 

  • Yin, X. S., Zhong, Z. F., Bian, G. L., Cheng, X. J., & Li, D. Q. (2020). Ultra-rapid, enhanced and eco-friendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction. Food Chemistry, 319, 126555. https://doi.org/10.1016/j.foodchem.2020.126555

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J., Li, H., Tao, W., Han, Q., Dong, H., Zhang, J., Jing, Y., Wang, Y., Xiong, Q., & Xu, T. (2020). An effective method for extracting anthocyanins from blueberry based on freeze-ultrasonic thawing technology. Ultrasonics Sonochemistry, 68, 105192. https://doi.org/10.1016/j.ultsonch.2020.105192

    Article  CAS  PubMed  Google Scholar 

  • Yue, T., Shao, D., Yuan, Y., Wang, Z., & Qiang, C. (2012). Ultrasound-assisted extraction, HPLC analysis, and antioxidant activity of polyphenols from unripe apple. Journal of Separation Science, 35(16), 2138–2145. https://doi.org/10.1002/jssc.201200295

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., Chen, Z., Zhou, Q., Sun, D.-W., Chen, H., Zhao, Y., Zhou, W., Li, X., & Pan, H. (2018). Freezing efficiency and quality attributes as affected by voids in plant tissues during ultrasound-assisted immersion freezing. Food and Bioprocess Technology, 11(9), 1615–1626. https://doi.org/10.1007/s11947-018-2103-8

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Fundamental Research Funds for the Central Universities (2572021AW44) and Heilongjiang Touyan Innovation Team Program for Forest Ecology and Conservation.

Author information

Authors and Affiliations

Authors

Contributions

Yuan Gao: methodology, data curation, roles/writing–original draft. Siru Guo: writing–review and editing, validation, software. Ying Zhao: investigation, visualization, validation. Qianru Ji: formal analysis, visualization. Cholil Yun: conceptualization, writing–review and editing. Shengfang Wang: validation. Yaru Zhang: software. Wenjie Wang: supervision, resources. Huimei Wang: project administration, writing–review and editing, resources.

Corresponding author

Correspondence to Huimei Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuan Gao and Siru Guo contributed equally to this work and should be considered co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4645 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Guo, S., Zhao, Y. et al. Extraction and Preconcentration of the Main Target Polyphenols from Empetrum nigrum by Freeze-Ultrasonic Thawing Method Based on Synthetic Gemini Surfactant Aqueous Systems. Food Bioprocess Technol 16, 844–856 (2023). https://doi.org/10.1007/s11947-022-02969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02969-z

Keywords

Navigation