Skip to main content
Log in

The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Less consumed cereals, such as millet, sorghum, and teff and other crops, such as quinoa, amaranth, and buckwheat, belonging to the group of grains called pseudocereals, are often undervalued as a source of nutrients and are not usually introduced regularly in the diet. However, they have a nutritional profile that has nothing to envy to some widely consumed cereals, including wheat, rice, or maize. In addition, the nutraceutical profile of these grain crops is especially interesting due to the bioactive properties exhibited and reported in the literature. This review focuses on the potential of industrial processing to increase the content of macro- and micronutrients and the levels of bioactive compounds, and to decrease the concentration of anti-nutrients in the grains of the aforementioned minor cereals and pseudocereals. The improvement of the nutritional and nutraceutical profile showed by the procedures discussed through this review should be deeply studied in order to understand in a more detailed way the changes that occur in the tissue of these seeds. In the coming future, genetic technology could be used to influence the composition of the crops grains, which would be used as improved nutraceuticals in the development of functional foods with high nutritional quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to ethical reasons.

References

  • Abah, C. R., Ishiwu, C. N., Obiegbuna, J. E., & Oladejo, A. A. (2020). Nutritional composition, functional properties and food applications of millet grains. Asian Food Science Journal, 14(2), 9–19. https://doi.org/10.9734/afsj/2020/v14i230124

    Article  Google Scholar 

  • Adebo, O. A., & Medina-Meza, I. G. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4). https://doi.org/10.3390/molecules25040927

  • Adebowale, A. R. A., Emmambux, M. N., Beukes, M., & Taylor, J. R. N. (2011). Fractionation and characterization of teff proteins. Journal of Cereal Science, 54(3), 380–386. https://doi.org/10.1016/j.jcs.2011.08.002

    Article  CAS  Google Scholar 

  • Ajayi, F. F., Mudgil, P., Gan, C. Y., & Maqsood, S. (2021). Identification and characterization of cholesterol esterase and lipase inhibitory peptides from amaranth protein hydrolysates. Food Chemistry: X12, 100165. https://doi.org/10.1016/j.fochx.2021.100165

  • Akansha, Sharma, & K., & Chauhan, E. S. (2018). Nutritional composition, physical characteristics and health benefits of teff grain for human consumption : A review. The Pharma Innovation Journal, 7(10), 3–7.

    CAS  Google Scholar 

  • Aleksandrova, A., Mykolenko, S., Tymchak, D., & Aliieva, O. (2021). Effect of pop sorghum on the quality of gluten-free cereal bars. Innovative Technologies in Industry, 77(6), 3–10.

    Google Scholar 

  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2009a). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(SUPPL.4), 240–257. https://doi.org/10.1080/09637480902950597

  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21(2), 106–113. https://doi.org/10.1016/j.tifs.2009.10.014

    Article  CAS  Google Scholar 

  • Alvarez-Jubete, L., Holse, M., Hansen, Å., Arendt, E. K., & Gallagher, E. (2009b). Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chemistry, 86(5), 511–515. https://doi.org/10.1094/CCHEM-86-5-0511

  • Amare, E., Mouquet-Rivier, C., Servent, A., Morel, G., Adish, A., & Haki, G. D. (2015). Protein quality of amaranth grains cultivated in ethiopia as affected by popping and fermentation. Food and Nutrition Sciences, 06(01), 38–48. https://doi.org/10.4236/fns.2015.61005

    Article  CAS  Google Scholar 

  • Awika, J. M. (2017). Sorghum: Its unique nutritional and health-promoting attributes. In J. R. N. Taylor & J. M. Awika (Eds.), Gluten-Free Ancient Grains (pp. 21–54). Sawston: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100866-9.00003-0

  • Axelsson, L. (2004). Lactic acid bacteria: Classification and physiology. In S. Salminen, A. von Wright, & A. Ouwehand (Eds.), Lactic Acid Bacteria: Microbiological and Functional Aspects (Third., pp. 1–66). New York: Marcel Dekker.

  • Barba de la Rosa, A. P., Fomsgaard, I. S., Laursen, B., Mortensen, A. G., Olvera-Martínez, L., Silva-Sánchez, C., et al. (2009). Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 49(1), 117–121. https://doi.org/10.1016/j.jcs.2008.07.012

    Article  CAS  Google Scholar 

  • Baye, K. (2014). Teff: Nutrient composition and health benefits. International Food Policy Research Institute.

  • Békés, F., Schoenlechner, R., & Tömösközi, S. (2017). Ancient wheats and pseudocereals for possible use in cereal-grain dietary intolerances. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second., pp. 353–389). Sawston: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100719-8.00014-0

  • Berganza, B. E., Moran, A. W., Rodríguez, G., Coto, N., Santamaría, M., & Bressani, R. (2003). Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods for Human Nutrition, 58, 1–6. https://doi.org/10.1023/B:QUAL.0000041143.24454.0a

    Article  Google Scholar 

  • Berghofer, E., & Schoenlechner, R. (2002). Grain amaranth. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and less common cereals: Grain properties and utilization potential (pp. 219–260). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09544-7_7

  • Bhinder, S., Kaur, A., Singh, B., Yadav, M. P., & Singh, N. (2020). Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International130, 108946. https://doi.org/10.1016/j.foodres.2019.108946

  • Blanco-Vaca, F., Cedó, L., & Julve, J. (2019). Phytosterols in cancer: From molecular mechanisms to preventive and therapeutic potentials. Current Medicinal Chemistry, 26(37), 6735–6749. https://doi.org/10.2174/0929867325666180607093111

    Article  CAS  PubMed  Google Scholar 

  • Bolívar-Monsalve, J., Ceballos-González, C., Ramírez-Toro, C., & Bolívar, G. A. (2018). Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. Journal of Food Processing and Preservation, 42(2). https://doi.org/10.1111/jfpp.13495

  • Boncompagni, E., Orozco-Arroyo, G., Cominelli, E., Gangashetty, P. I., Grando, S., Kwaku Zu, T. T., & Sparvoli, F. (2018). Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PloS One13(6), e0198394. https://doi.org/10.1371/journal.pone.0198394

  • Bot, A. (2018). Phytosterols. In G. Smithers (Ed.), Reference Module in Food Science. Amsterdam: Elsevier.

  • Bressani, R., & García-Vela, L. A. (1990). Protein fractions in amaranth grain and their chemical characterization, 38(5), 1205–1209.

    CAS  Google Scholar 

  • Cabrera-Ramírez, A. H., Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Morales-Sánchez, E., Campos-Vega, R., & Gaytán-Martínez, M. (2020). Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International134, 109234. https://doi.org/10.1016/j.foodres.2020.109234

  • Carciochi, R. A., Manrique, G. D., & Dimitrov, K. (2014). Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21(2), 767–773.

  • Carrizo, S. L., Montes de Oca, C. E., Hébert, M. E., Saavedra, L., Vignolo, G., LeBlanc, J. G., & Rollán, G. C. (2017). Lactic acid bacteria from andean grain amaranth: A source of vitamins and functional value enzymes. Journal of molecular microbiology and biotechnology, 27(5), 289–298. https://doi.org/10.1159/000480542

    Article  CAS  PubMed  Google Scholar 

  • Carrizo, S. L., Montes de Oca, C. E., Laiño, J. E., Suarez, N. E., Vignolo, G., LeBlanc, J. G., & Rollán, G. (2016). Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Research International, 89, 488–494. https://doi.org/10.1016/j.foodres.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  • Caselato-Sousa, V. M., & Amaya-Farfán, J. (2012). State of Knowledge on amaranth grain: A comprehensive review. Journal of Food Science, 77(4). https://doi.org/10.1111/j.1750-3841.2012.02645.x

  • Castro-Jácome, T. P., Alcántara-Quintana, L. E., & Tovar-Pérez, E. G. (2020). Optimization of sorghum kafirin extraction conditions and identification of potential bioactive peptides. BioResearch Open Access, 9(1), 198–208. https://doi.org/10.1089/biores.2020.0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan, E. S. (2018). Effects of processing (germination and popping) on the nutritional and anti-nutritional properties of finger millet (Eleusine coracana). Current Research in Nutrition and Food Science Journal6(2), 566-572. https://doi.org/10.12944/CRNFSJ.6.2.30

  • Chavan, J. K., Kadam, S. S., & Beuchat, L. R. (1989). Nutritional improvement of cereals by fermentation. Critical Reviews in Food Science & Nutrition, 28(5), 349–400. https://doi.org/10.1080/10408398909527507

    Article  CAS  Google Scholar 

  • Chavan, R. S., & Chavan, S. R. (2011). Sourdough technology—A traditional way for wholesome foods: A review. Comprehensive Reviews in Food Science and Food Safety, 10(3), 169–182. https://doi.org/10.1111/j.1541-4337.2011.00148.x

    Article  CAS  Google Scholar 

  • Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

    Article  CAS  PubMed  Google Scholar 

  • Chirinos, R., Pedreschi, R., Velásquez-Sánchez, M., Aguilar-Galvez, A., & Campos, D. (2020). In vitro antioxidant and angiotensin I-converting enzyme inhibitory properties of enzymatically hydrolyzed quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) proteins. Cereal Chemistry, 97(5), 949–957. https://doi.org/10.1002/cche.10317

    Article  CAS  Google Scholar 

  • Chung, I. M., Kim, E. H., Yeo, M. A., Kim, S. J., Seo, M. C., & Moon, H. I. (2011). Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Research International, 44(1), 127–132. https://doi.org/10.1016/j.foodres.2010.10.051

    Article  CAS  Google Scholar 

  • Chung, I. M., Yong, S. J., Lee, J., & Kim, S. H. (2013). Effect of genotype and cultivation location on β-sitosterol and α-, β-, γ-, and δ-tocopherols in sorghum. Food Research International, 51(2), 971–976. https://doi.org/10.1016/j.foodres.2013.02.027

    Article  CAS  Google Scholar 

  • Clouse, J. W., Adhikary, D., Page, J. T., Ramaraj, T., Deyholos, M. K., Udall, J. A., et al. (2016). The amaranth genome: Genome, transcriptome, and physical map assembly. The Plant Genome, 9(1). https://doi.org/10.3835/plantgenome2015.07.0062

  • Colque-Little, C., Abondano, M. C., Lund, O. S., Amby, D. B., Piepho, H. P., Andreasen, C., et al. (2021). Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa). BMC Plant Biology, 21(1), 1–19. https://doi.org/10.1186/s12870-020-02804-7

    Article  CAS  Google Scholar 

  • Correia, I., Nunes, A., Barros, A. S., & Delgadillo, I. (2010). Comparison of the effects induced by different processing methods on sorghum proteins. Journal of Cereal Science, 51(1), 146–151. https://doi.org/10.1016/j.jcs.2009.11.005

    Article  CAS  Google Scholar 

  • Corzo-Ríos, L. J., Garduño-Siciliano, L., Sánchez-Chino, X. M., Martínez-Herrera, J., Cardador-Martínez, A., & Jiménez-Martínez, C. (2021). Effect of the consumption of amaranth seeds and their sprouts on alterations of lipids and glucose metabolism in mice. International Journal of Food Science and Technology, 56(7), 3269–3277. https://doi.org/10.1111/ijfs.15014

    Article  CAS  Google Scholar 

  • Cruet‐Burgos, C., Cox, S., Ioerger, B. P., Perumal, R., Hu, Z., Herald, T. J., & Rhodes, D. H. (2020). Advancing provitamin A biofortification in sorghum: genome‐wide association studies of grain carotenoids in global germplasm. The Plant Genome13(1), e20013. https://doi.org/10.1002/tpg2.20013

  • Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food chemistry299, 125161. https://doi.org/10.1016/j.foodchem.2019.125161

  • Davana, T. V., Revanna, M. L., & Begum, S. S. (2021). Effect of malting on the nutritional composition, anti-nutrition factors and mineral composition on sorghum (Sorghum bicolor). Asian Journal of Dairy and Food Research, 40(4), 451–455. https://doi.org/10.18805/ajdfr.DR-1624

  • De Angelis, M., Gallo, G., Corbo, M. R., McSweeney, P. L. H., Faccia, M., Giovine, M., & Gobbetti, M. (2003). Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 87(3), 259–270. https://doi.org/10.1016/S0168-1605(03)00072-2

    Article  CAS  PubMed  Google Scholar 

  • De Bock, P., Daelemans, L., Selis, L., Raes, K., Vermeir, P., Eeckhout, M., & Van Bockstaele, F. (2021a). Comparison of the chemical and technological characteristics of wholemeal flours obtained from amaranth (Amaranthus sp.), quinoa (chenopodium quinoa) and buckwheat (fagopyrum sp.) seeds. Foods, 10(3). https://doi.org/10.3390/foods10030651

  • De Bock, P., Van Bockstaele, F., Muylle, H., Quataert, P., Vermeir, P., Eeckhout, M., & Cnops, G. (2021b). Yield and nutritional characterization of thirteen quinoa (Chenopodium quinoa willd.) varieties grown in north‐west europe—part i. Plants, 10(12). https://doi.org/10.3390/plants10122689

  • de Morais Cardoso, L., Pinheiro, S. S., Martino, H. S. D., & Pinheiro-Sant’Ana, H. M. (2017). Sorghum (Sorghumbicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical Reviews in Food Science and Nutrition, 57(2), 372–390. https://doi.org/10.1080/10408398.2014.887057

  • Derdemezis, C. S., Filippatos, T. D., Mikhailidis, D. P., & Elisaf, M. S. (2010). Effects of plant sterols and stanols beyond low-density lipoprotein cholesterol lowering. Journal of Cardiovascular Pharmacology and Therapeutics, 15(2), 120–134. https://doi.org/10.1177/1074248409357921

    Article  CAS  PubMed  Google Scholar 

  • Duodu, K. G., & Awika, J. M. (2018). Phytochemical-related health-promoting attributes of sorghum and millets. In J. R. N. Taylor & K. G. Duodu (Eds.), Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes (pp. 225–258). Sawston: Woodhead Publishing and AACC International Press. https://doi.org/10.1016/B978-0-12-811527-5.00008-3

  • Dziedzic, K., Szwengiel, A., Górecka, D., Rudzińska, M., Korczak, J., & Walkowiak, J. (2016). The effect of processing on the phytosterol content in buckwheat groats and by-products. Journal of Cereal Science, 69, 25–31. https://doi.org/10.1016/j.jcs.2016.02.003

    Article  CAS  Google Scholar 

  • El-Alfy, T. S., Ezzat, S. M., & Sleem, A. A. (2012). Chemical and biological study of the seeds of Eragrostis tef (Zucc.) Trotter. Natural Product Research, 26(7), 619–629. https://doi.org/10.1080/14786419.2010.538924

  • El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., Kacimi, K. E. L., & Yasri, A. (2020). An insight into saponins from Quinoa (Chenopodium quinoa Willd): A review. Molecules, 25(5). https://doi.org/10.3390/molecules25051059

  • Elekofehinti, O. O., Iwaloye, O., Olawale, F., & Ariyo, E. O. (2021). Saponins in cancer treatment: Current progress and future prospects. Pathophysiology, 28(2), 250–272. https://doi.org/10.3390/pathophysiology28020017

    Article  PubMed  PubMed Central  Google Scholar 

  • Escribano, J., Cabanes, J., Jiménez-Atiénzar, M., Ibañez-Tremolada, M., Gómez-Pando, L. R., García-Carmona, F., & Gandía-Herrero, F. (2017). Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chemistry, 234, 285–294. https://doi.org/10.1016/j.foodchem.2017.04.187

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Ramírez, J., Rodríguez, A., De la Rosa-Millán, J., Heredia-Olea, E., Pérez-Carrillo, E., & Serna-Saldívar, S. O. (2021). Shear-induced enhancement of technofunctional properties of whole grain flours through extrusion. Food Hydrocolloids111, 106400. https://doi.org/10.1016/j.foodhyd.2020.106400

  • Etuk, E. B., Okeudo, N. J., Esonu, B. O., & Udedibie, A. B. I. (2012). Anti-nutritional factors in sorghum: Chemistry, mode of action and effects on livestock and poultry. Online Journal of Animal and Feed Research, 2(2), 113–119.

    Google Scholar 

  • Fan, X., Guo, H., Teng, C., Zhang, B., Blecker, C., & Ren, G. (2022). Anti-Colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in caco-2 cells. Foods, 11(2). https://doi.org/10.3390/foods11020194

  • Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: nutritional, functional, and antinutritional aspects. Critical reviews in food science and nutrition57(8), 1618-1630. https://doi.org/10.1080/10408398.2014.1001811

  • Francis, G., Kerem, Z., Makkar, H. P. S., & Becker, K. (2002). The biological action of saponins in animal systems: A review. British Journal of Nutrition, 88(6), 587–605. https://doi.org/10.1079/bjn2002725

    Article  CAS  PubMed  Google Scholar 

  • Ganeshpurkar, A., & Saluja, A. K. (2017). The Pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025

    Article  PubMed  Google Scholar 

  • Gaytán-Martínez, M., Cabrera-Ramírez, Á. H., Morales-Sánchez, E., Ramírez-Jiménez, A. K., Cruz-Ramírez, J., Campos-Vega, R., et al. (2017). Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 77, 1–8. https://doi.org/10.1016/j.jcs.2017.06.014

    Article  CAS  Google Scholar 

  • Gebru, Y. A., Kim, D. W., Sbhatu, D. B., Abraha, H. B., Lee, J. W., Choi, Y. Bin., et al. (2021). Comparative analysis of total phenol, total flavonoid and in vitro antioxidant capacity of white and brown teff (Eragrostis tef), and identification of individual compounds using UPLC-qTOF-MS. Journal of Food Measurement and Characterization, 15(6), 5392–5407. https://doi.org/10.1007/s11694-021-01113-3

    Article  Google Scholar 

  • Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., & Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103–113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti, M., De Angelis, M., Di Cagno, R., Polo, A., & Rizzello, C. G. (2020). The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Critical Reviews in Food Science and Nutrition, 60(13), 2158–2173. https://doi.org/10.1080/10408398.2019.1631753

    Article  PubMed  Google Scholar 

  • Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Caboni, M. F. (2011). Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology. Journal of Agricultural and Food Chemistry, 59(20), 10815–10825. https://doi.org/10.1021/jf202224j

    Article  CAS  PubMed  Google Scholar 

  • Gómez, M. J. R., Prieto, J. M., Sobrado, V. C., & Magro, P. C. (2021). Nutritional characterization of six quinoa (Chenopodium quinoa Willd) varieties cultivated in Southern Europe. Journal of Food Composition and Analysis99, 103876. https://doi.org/10.1016/j.jfca.2021.103876

  • Goncalves, A., Gleize, B., Bott, R., Nowicki, M., Amiot, M. J., Lairon, D., et al. (2011). Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Molecular Nutrition and Food Research, 55(SUPPL. 2). https://doi.org/10.1002/mnfr.201100055

  • Guclu-Ustundag, Ö., & Mazza, G. (2007). Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231–258. https://doi.org/10.1080/10408390600698197

    Article  CAS  PubMed  Google Scholar 

  • Gugal, R. H., & Yenagi, N. B. (2016). Nutrient composition and neutraceutical properties of processed pop sorghum cultivars. Journal of Farm Sciences, 29(1), 70–75.

    Google Scholar 

  • Guo, H., Hao, Y., Richel, A., Everaert, N., Chen, Y., Liu, M., et al. (2020). Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. Journal of the Science of Food and Agriculture, 100(15), 5569–5576. https://doi.org/10.1002/jsfa.10609

    Article  CAS  PubMed  Google Scholar 

  • Hager, A. S., Wolter, A., Jacob, F., Zannini, E., & Arendt, E. K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 56(2), 239–247. https://doi.org/10.1016/j.jcs.2012.06.005

    Article  CAS  Google Scholar 

  • Han, Y., Chi, J., Zhang, M., Zhang, R., Fan, S., Dong, L., ... & Liu, L. (2019). Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT114, 108381. https://doi.org/10.1016/j.lwt.2019.108381

  • Hejazi, S. N., & Orsat, V. (2016). Malting process optimization for protein digestibility enhancement in finger millet grain. Journal of Food Science and Technology, 53(4), 1929–1938. https://doi.org/10.1007/s13197-016-2188-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helguera, M., Abugalieva, A., Battenfield, S., Békés, F., Branlard, G., Cuniberti, M., et al. (2020). Grain quality in breeding. In G. Igrejas, T. M. Ikeda, & C. Guzmán (Eds.), Wheat Quality For Improving Processing And Human Health (pp. 273–307). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-34163-3_12

  • Henrion, M., Labat, E., & Lamothe, L. (2020). Pseudocereals as healthy grains. In M. Pojić & U. Tiwari (Eds.), Innovative Processing Technologies for Healthy Grains (pp. 37–59). Hoboken (NJ): John Wiley & Sons. https://doi.org/10.1002/9781119470182.ch3

  • Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as a source of nutrients and bioactive compounds: A review. Bioactive Compounds in Health and Disease, 2(3), 27–47. https://doi.org/10.31989/bchd.v2i3.556

  • Hisano, H., Abe, F., Hoffie, R. E., & Kumlehn, J. (2021). Targeted genome modifications in cereal crops. Breeding Science, 71(4), 405–416. https://doi.org/10.1270/jsbbs.21019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C. Y., Chu, Y. L., Sridhar, K., & Tsai, P. J. (2019). Analysis and determination of phytosterols and triterpenes in different inbred lines of Djulis (Chenopodium formosanum Koidz.) hull: A potential source of novel bioactive ingredients. Food Chemistry, 297. https://doi.org/10.1016/j.foodchem.2019.06.015

  • Iftikhar, M., & Khan, M. (2019). Amaranth. In J. Wang, B. Sun, & R. Tsao (Eds.), Bioactive factors and processing technology for cereal foods (pp. 217–232). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-13-6167-8_13

  • Jadhav, M. V, & Annapure, U. S. (2013). Effect of extrusion process parameters and particle size of sorghum flour on expanded snacks prepared using different varieties of sorghum (Sorghum bicolour L.). Journal of Agricultural Science and Technology B, 3(2B).

  • Jafari, M., Koocheki, A., & Milani, E. (2017). Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates. Journal of Cereal Science, 75, 324–331. https://doi.org/10.1016/j.jcs.2017.05.005

    Article  CAS  Google Scholar 

  • Jaiswal, V., Bandyopadhyay, T., Gahlaut, V., Gupta, S., Dhaka, A., Ramchiary, N., & Prasad, M. (2019). Genome-wide association study (GWAS) delineates genomic loci for ten nutritional elements in foxtail millet (Setaria italica L.). Journal of Cereal Science, 85, 48–55. https://doi.org/10.1016/j.jcs.2018.11.006

    Article  CAS  Google Scholar 

  • Jan, K. N., Panesar, P. S., & Singh, S. (2018). Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole indian quinoa flour. LWT, 93, 573–582. https://doi.org/10.1016/j.lwt.2018.04.013

    Article  CAS  Google Scholar 

  • Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J. A., et al. (2017). The genome of Chenopodium quinoa. Nature, 542(7641), 307–312. https://doi.org/10.1038/nature21370

    Article  CAS  PubMed  Google Scholar 

  • Jeepipalli, S. P., Du, B., Sabitaliyevich, U. Y., & Xu, B. (2020). New insights into potential nutritional effects of dietary saponins in protecting against the development of obesity. Food Chemistry318, 126474. https://doi.org/10.1016/j.foodchem.2020.126474

  • Joshi, D. C., Sood, S., Hosahatti, R., Kant, L., Pattanayak, A., Kumar, A., et al. (2018). From zero to hero: The past, present and future of grain amaranth breeding. Theoretical and Applied Genetics, 131(9), 1807–1823. https://doi.org/10.1007/s00122-018-3138-y

    Article  CAS  PubMed  Google Scholar 

  • Joshi, R. (2018). Role of enzymes in seed germination. International Journal of Creative Research Thoughts, 6(2), 1481–1485.

    Google Scholar 

  • Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6). https://doi.org/10.3390/foods8060199

  • Karamać, M., Gai, F., Longato, E., Meineri, G., Janiak, M. A., Amarowicz, R., & Peiretti, P. G. (2019). Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants, 8(6). https://doi.org/10.3390/antiox8060173

  • Karimian, J., Abedi, S., Shirinbakhshmasoleh, M., Moodi, F., Moodi, V., & Ghavami, A. (2021). The effects of quinoa seed supplementation on cardiovascular risk factors: A systematic review and meta-analysis of controlled clinical trials. Phytotherapy Research, 35(4), 1688–1696. https://doi.org/10.1002/ptr.6901

    Article  CAS  PubMed  Google Scholar 

  • Karovičová, Z.K.-J., & Kohajdova, J. (2007). Fermentation of cereals for specific purpose. Journal of Food and Nutrition Research, 46(2), 51–57.

    Google Scholar 

  • Kataria, A., Sharma, S., & Dar, B. N. (2021). Changes in phenolic compounds, antioxidant potential and antinutritional factors of Teff (Eragrostis tef) during different thermal processing methods. International Journal of Food Science & Technologyhttps://doi.org/10.1111/ijfs.15210

  • Khan, R., Dutta Professor, A., Raushan Khan, C., & Dutta, A. (2018). Effect of popping on physico-chemical and nutritional parameters of amaranth grain. Journal of Pharmacognosy and Phytochemistry, 7(3), 954–958.

    CAS  Google Scholar 

  • Koubová, E., Mrázková, M., Sumczynski, D., & Orsavová, J. (2018). In vitro digestibility, free and bound phenolic profiles and antioxidant activity of thermally treated Eragrostis tef L. Journal of the Science of Food and Agriculture, 98(8), 3014–3021. https://doi.org/10.1002/jsfa.8800

    Article  CAS  PubMed  Google Scholar 

  • Kulthe, A. A., Vidyapeeth, Phule Krishi, & M., Amol Khapre, I. P., Thorat, S. S., & Khapre, A. P. (2018). Nutritional and sensory characteristics of cookies prepared from pearl millet flour. The Pharma Innovation Journal, 7(4), 908–913.

    Google Scholar 

  • Kumar Maurya, N., & Arya, P. (2018). Amaranthus grain nutritional benefits: A review. Journal of Pharmacognosy and Phytochemistry, 7(2), 2258–2262.

    Google Scholar 

  • Labuschagne, M. T. (2018). A review of cereal grain proteomics and its potential for sorghum improvement. Journal of Cereal Science, 84, 151–158. https://doi.org/10.1016/j.jcs.2018.10.010

    Article  CAS  Google Scholar 

  • Lamothe, L. M., Srichuwong, S., Reuhs, B. L., & Hamaker, B. R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chemistry, 167, 490–496. https://doi.org/10.1016/j.foodchem.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  • Lásztity, R. (1999). Cereal chemistry. Budapest: Akadémiai Kiadó.

  • Leguizamón, C., Weller, C. L., Schlegel, V. L., & Carr, T. P. (2009). Plant sterol and policosanol characterization of hexane extracts from grain sorghum, corn and their DDGS. JAOCS, Journal of the American Oil Chemists’ Society, 86(7), 707–716. https://doi.org/10.1007/s11746-009-1398-z

    Article  CAS  Google Scholar 

  • Li, H., Deng, Z., Liu, R., Zhu, H., Draves, J., Marcone, M., et al. (2015). Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. Journal of Food Composition and Analysis, 37, 75–81. https://doi.org/10.1016/j.jfca.2014.09.003

    Article  CAS  Google Scholar 

  • Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S. J., Zhang, C., et al. (2018a). Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. Plant Physiology, 177(4), 1425–1438. https://doi.org/10.1104/pp.18.00200

  • Li, L., Lietz, G., & Seal, C. (2018b). Buckwheat and CVD risk markers: A systematic review and meta-analysis. Nutrients, 10(5). https://doi.org/10.3390/nu10050619

  • Li, S., Chen, C., Ji, Y., Lin, J., Chen, X., & Qi, B. (2018c). Improvement of nutritional value, bioactivity and volatile constituents of quinoa seeds by fermentation with Lactobacillus casei. Journal of Cereal Science, 84, 83–89. https://doi.org/10.1016/j.jcs.2018.10.008

  • Li, L., Lietz, G., & Seal, C. J. (2021). Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. International Journal of Food Science and Technology, 56(7), 3245–3254. https://doi.org/10.1111/ijfs.14962

  • Lim, J. G., Park, H., & Yoon, K. S. (2020). Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Science & Nutrition, 8(1), 694–702. https://doi.org/10.1002/fsn3.1358

  • Liu, M., Zhu, K., Yao, Y., Chen, Y., Guo, H., Ren, G., et al. (2020). Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry, 97(3), 703–713. https://doi.org/10.1002/cche.10286

    Article  CAS  Google Scholar 

  • Lohani, U. C., & Muthukumarappan, K. (2017). Effect of extrusion processing parameters on antioxidant, textural and functional properties of hydrodynamic cavitated corn flour, sorghum flour and apple pomace-based extrudates. Journal of Food Process Engineering, 40(3). https://doi.org/10.1111/jfpe.12424

  • López, D. N., Galante, M., Robson, M., Boeris, V., & Spelzini, D. (2018). Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules, 159, 152–159. https://doi.org/10.1016/j.ijbiomac.2017.12.080

    Article  CAS  Google Scholar 

  • Lux, T., Wernecke, C., Bosse, R., Reimold, F., & Flöter, E. (2021). Textural and morphological changes of heat soaked raw Amaranthus caudatus. Journal of Cereal Science98, 103168. https://doi.org/10.1016/j.jcs.2021.103168

  • Maidana, S. D., Ficoseco, C. A., Bassi, D., Cocconcelli, P. S., Puglisi, E., Savoy, G., & Fontana, C. (2020). Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented chia sourdough. International Journal of Food Microbiology316, 108425. https://doi.org/10.1016/j.ijfoodmicro.2019.108425

  • Majid, A., Priyadarshini, C. G., & P. (2020). Millet derived bioactive peptides: A review on their functional properties and health benefits. Critical Reviews in Food Science and Nutrition, 60(19), 3342–3351. https://doi.org/10.1080/10408398.2019.1686342

    Article  CAS  PubMed  Google Scholar 

  • Marcone, M. F., Kakuda, Y., & Yada, R. Y. (2004). Amaranth as a rich dietary source of β-sitosterol and other phytosterols. Plant Foods for Human Nutrition, 58, 207–211.

    Article  Google Scholar 

  • Marmouzi, I., El Madani, N., Charrouf, Z., Cherrah, Y., & El Abbes Faouzi, M. Y. (2015). Proximate analysis, fatty acids and mineral composition of processed Moroccan Chenopodium quinoa Willd. and antioxidant properties according to the polarity. Phytotherapie, 13(2), 110–117. https://doi.org/10.1007/s10298-015-0931-5

  • Martínez-Villaluenga, C., Peñas, E., & Hernández-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology137, 111178. https://doi.org/10.1016/j.fct.2020.111178

  • Martirosyan, D. M., Miroshnichenko, L. A., Kulakova, S. N., Pogojeva, A. V., & Zoloedov, V. I. (2007). Amaranth oil application for coronary heart disease and hypertension. Lipids in Health and Disease6(1), 1-12. https://doi.org/10.1186/1476-511X-6-1

  • Mattila, P. H., Pihlava, J. M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S., et al. (2018). Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Quality and Safety, 2(4), 213–219. https://doi.org/10.1093/fqsafe/fyy021

    Article  CAS  Google Scholar 

  • Melini, F., & Melini, V. (2021a). Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation, 7(1). https://doi.org/10.3390/fermentation7010020

  • Melini, V., & Melini, F. (2021b). Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods, 10(2). https://doi.org/10.3390/foods10020351

  • Mhada, M., Metougui, M. L., El Hazzam, K., El Kacimi, K., & Yasri, A. (2020). Variations of saponins, minerals and total phenolic compounds due to processing and cooking of quinoa (Chenopodium quinoa Willd.) seeds. Foods, 9(5). https://doi.org/10.3390/foods9050660

  • Mir, N. A., Riar, C. S., & Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science and Technology, 75, 170–180. https://doi.org/10.1016/j.tifs.2018.03.016

    Article  CAS  Google Scholar 

  • Mlakar, S. G., Turinek, M., Jakop, M., Bavec, M., & Bavec, F. (2009). Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura, 6, 43–53.

    Google Scholar 

  • Mohapatra, D., Patel, A. S., Kar, A., Deshpande, S. S., & Tripathi, M. K. (2019). Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chemistry, 271, 129–135. https://doi.org/10.1016/j.foodchem.2018.07.196

    Article  CAS  PubMed  Google Scholar 

  • Montemurro, M., Coda, R., & Rizzello, C. G. (2019). Recent advances in the use of sourdough biotechnology in pasta making. Foods, 8(4), 129. https://doi.org/10.3390/foods8040129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora-Escobedo, R., del Robles-Ramírez, M., & C., Ramón-Gallegos, E., & Reza-Alemán, R. (2009). Effect of protein hydrolysates from germinated soybean on cancerous cells of the human cervix: An in vitro study. Plant Foods for Human Nutrition, 64(4), 271–278. https://doi.org/10.1007/s11130-009-0131-2

    Article  CAS  PubMed  Google Scholar 

  • Morales, D., Miguel, M., & Garcés-Rimón, M. (2021). Pseudocereals: A novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition, 61(9), 1537–1544. https://doi.org/10.1080/10408398.2020.1761774

    Article  CAS  PubMed  Google Scholar 

  • Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14(4), 577–605. https://doi.org/10.1007/s11101-015-9394-4

    Article  CAS  Google Scholar 

  • Nakilcioğlu, E., & Ötleş, S. (2022). Multiresponse optimization of physical, chemical, and sensory properties of the gluten-free cake made with whole white quinoa flour. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-022-05406-3

    Article  PubMed  Google Scholar 

  • Niro, S., D’Agostino, A., Fratianni, A., Cinquanta, L., & Panfili, G. (2019). Gluten-free alternative grains: Nutritional evaluation and bioactive compounds. Foods, 8(6). https://doi.org/10.3390/foods8060208

  • Njoki, J. W., Sila, D. N., & Onyango, A. N. (2014). Impact of processing techniques on nutrient and anti-nutrient content of grain amaranth (A. albus). Food Science and Quality Management, 25, 10–17.

    Google Scholar 

  • Obilana, A. B., & Manyasa, E. (2002). Millets. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and less common cereals: Grain properties and utilization potential (pp. 177–217). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09544-7_6

  • Offiah, V., Kontogiorgos, V., & Falade, K. O. (2019). Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition, 59(18), 2979–2998. https://doi.org/10.1080/10408398.2018.1480007

    Article  PubMed  Google Scholar 

  • Ogrodowska, D., Zadernowski, R., Czaplicki, S., Derewiaka, D., & Wronowska, B. (2014). Amaranth seeds and products - The source of bioactive compounds. Polish Journal of Food and Nutrition Sciences, 64(3), 165–170. https://doi.org/10.2478/v10222-012-0095-z

    Article  CAS  Google Scholar 

  • Ojokoh, A. O., Alade, R. A., Ozabor, P. T., & Fadahunsi, I. F. (2020). Effect of fermentation on sorghum and cowpea flour blends. Journal of Agricultural Biotechnology and Sustainable Development, 12(2), 39–49. https://doi.org/10.5897/JABSD2019.0365

    Article  Google Scholar 

  • Oleszek, W. A. (2002). Chromatographic determination of plant saponins. Journal of Chromatography A, 197(1), 147–162. https://doi.org/10.1016/S0021-9673(01)01556-4

    Article  Google Scholar 

  • Omary, M. B., Fong, C., Rothschild, J., & Finney, P. (2012). Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: A review. Cereal Chemistry, 89(1), 1–14. https://doi.org/10.1094/CCHEM-01-11-0008

    Article  CAS  Google Scholar 

  • Ontiveros, N., López-Teros, V., de Jesús Vergara-Jiménez, M., Islas-Rubio, A. R., Cárdenas-Torres, F. I., Cuevas-Rodríguez, E. O., & Cabrera-Chávez, F. (2020). Amaranth-hydrolyzate enriched cookies reduce the systolic blood pressure in spontaneously hypertensive rats. Journal of Functional Foods64, 103613. https://doi.org/10.1016/j.jff.2019.103613

  • Pandya, A., Thiele, B., Zurita-Silva, A., Usadel, B., & Fiorani, F. (2021). Determination and metabolite profiling of mixtures of triterpenoid saponins from seeds of chilean quinoa (Chenopodium quinoa) germplasm. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091867

  • Panhwar, R. B., Akbar, A., Ali, M. F., Yang, Q., & Feng, B. (2018). Phytochemical components of some minor cereals associated with diabetes prevention and management. Journal of Biosciences and Medicines, 06(02), 9–22. https://doi.org/10.4236/jbm.2018.62002

    Article  CAS  Google Scholar 

  • Paśko, P., Sajewicz, M., Gorinstein, S., & Zachwieja, Z. (2008). Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatographica, 20(4), 661–672. https://doi.org/10.1556/AChrom.20.2008.4.11

    Article  CAS  Google Scholar 

  • Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115(3), 994–998. https://doi.org/10.1016/j.foodchem.2009.01.037

  • Paśko, P., Tyszka-Czochara, M., Namieśnik, J., Jastrzębski, Z., Leontowicz, H., Drzewiecki, J., et al. (2019). Cytotoxic, antioxidant and binding properties of polyphenols from the selected gluten-free pseudocereals and their by-products: In vitro model. Journal of Cereal Science, 87, 325–333. https://doi.org/10.1016/j.jcs.2019.04.009

    Article  CAS  Google Scholar 

  • Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229), 551–556. https://doi.org/10.1038/nature07723

    Article  CAS  PubMed  Google Scholar 

  • Paucar-Menacho, L. M., Dueñas, M., Peñas, E., Frias, J., & Martínez Villaluenga, C. (2018). Effect of dry heat puffing on nutritional composition, fatty acid, amino acid and phenolic profiles of pseudocereals grains. Polish Journal of Food and Nutrition Sciences, 68(4), 289–297. https://doi.org/10.1515/pjfns-2018-0005

  • Paucar-Menacho, L. M., Peñas, E., Dueñas, M., Frias, J., & Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Science and Technology, 76, 245–252. https://doi.org/10.1016/j.lwt.2016.07.038

  • Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38–46. https://doi.org/10.1016/j.indcrop.2017.10.006

    Article  CAS  Google Scholar 

  • Peng, L. X., Zou, L., Tan, M. L., Deng, Y. Y., Yan, J., Yan, Z. Y., & Zhao, G. (2017). Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech Journal of Food Sciences, 35(3), 214–222. https://doi.org/10.17221/185/2016-CJFS

  • Perovic, D., Kopahnke, D., Habekuss, A., Ordon, F., & Serfling, A. (2019). Marker-based harnessing of genetic diversity to improve resistance of barley to fungal and viral diseases. In T. Miedaner & V. Korzun (Eds.), Applications of Genetic and Genomic Research in Cereals (pp. 137–164). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-102163-7.00007-7

  • Petrova, P., & Petrov, K. (2020). Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients, 12(4), 1–26. https://doi.org/10.3390/nu12041118

    Article  CAS  Google Scholar 

  • Poli, A., Marangoni, F., Corsini, A., Manzato, E., Marrocco, W., Martini, D., et al. (2021). Phytosterols, cholesterol control, and cardiovascular disease. Nutrients, 13(8). https://doi.org/10.3390/nu13082810

  • Pontonio, E., & Rizzello, C. G. (2019). Minor and ancient cereals: Exploitation of the nutritional potential through the use of selected starters and sourdough fermentation. In V. R. Preedy & R. R. Watson (Eds.), Flour and Breads and Their Fortification in Health and Disease Prevention (Second., pp. 443–452). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-814639-2.00035-6

  • Ramalingam, A. P., Mohanavel, W., Premnath, A., Muthurajan, R., Vara Prasad, P. V., & Perumal, R. (2021). Large-scale non-targeted metabolomics reveals antioxidant, nutraceutical and therapeutic potentials of sorghum. Antioxidants, 10(10). https://doi.org/10.3390/antiox10101511

  • Rashwan, A. K., Yones, H. A., Karim, N., Taha, E. M., & Chen, W. (2021). Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends in Food Science and Technology, 110 (168–182). https://doi.org/10.1016/j.tifs.2021.01.087

  • Rathore, T., Rakhi Singh, I., Dinkar Kamble, I. B., Upadhyay, A., Thangalakshmi, I. S., Singh, Correspondence Rakhi, I., et al. (2019). Review on finger millet: Processing and value addition. The Pharma Innovation Journal, 8(4), 283–291.

    CAS  Google Scholar 

  • Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128–133. https://doi.org/10.1016/j.foodchem.2009.09.087

    Article  CAS  Google Scholar 

  • Reyes-Moreno, C., Cuevas-Rodríguez, E. O., & Reyes-Fernández, P. C. (2019). Amaranth. In S. A. Mir, A. Manickavasagan, & M. A. Shah (Eds.), Whole grains: Processing, product development, and nutritional aspects (pp. 1–24). CRC Press.

    Google Scholar 

  • Rizzello, C. G., Lorusso, A., Montemurro, M., & Gobbetti, M. (2016). Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology, 56, 1–13. https://doi.org/10.1016/j.fm.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  • Robin, F., Théoduloz, C., & Srichuwong, S. (2015). Properties of extruded whole grain cereals and pseudocereals flours. International Journal of Food Science and Technology, 50(10), 2152–2159. https://doi.org/10.1111/ijfs.12893

    Article  CAS  Google Scholar 

  • Ruales, J., de Grijalva, Y., Lopez-Jaramillo, P., & Nair, B. M. (2002). The nutritional quality of an infant food from quinoa and its effect on the plasma level of insulin-like growth factor-1 (IGF-1) in undernourished children. International Journal of Food Sciences and Nutrition, 53(2), 143–154. https://doi.org/10.1080/09637480220132157

    Article  CAS  PubMed  Google Scholar 

  • Ruiz Rodríguez, L., Vera Pingitore, E., Rollan, G., Cocconcelli, P. S., Fontana, C., Saavedra, L., et al. (2016a). Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs. Journal of Applied Microbiology, 120(5), 1289–1301. https://doi.org/10.1111/jam.13104

  • Ruiz Rodríguez, L., Vera Pingitore, E., Rollan, G., Martos, G., Saavedra, L., Fontana, C., et al. (2016b). Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough. Letters in Applied Microbiology, 63(2), 147–154. https://doi.org/10.1111/lam.12604

  • Ryan, E., Galvin, K., O’Connor, T. P., Maguire, A. R., & O’Brien, N. M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62(3), 85–91. https://doi.org/10.1007/s11130-007-0046-8

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Sicairos, E. S., Milán-Noris, A. K., Luna-Vital, D. A., Milán-Carrillo, J., & Montoya-Rodríguez, A. (2021). Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chemistry343, 128394. https://doi.org/10.1016/j.foodchem.2020.128394

  • Sara, C. S., & Seyda, G. (2019). Is it really a superfood? Quinoa and the effects on cardiovascular risk factors. Innovative Journal of Medical and Health Science, 9(4), 408–412. https://doi.org/10.15520/ijmhs.v9i4.2555

  • Sarwar, M. H., Sarwar, M. F., Sarwar, M., Ahmad, N. Q., & Moghal, S. (2013). The importance of cereals (Poaceae: Gramineae) nutrition in human health: A review. Journal of Cereals and Oilseeds, 4(3), 32–35. https://doi.org/10.5897/jco12.023

    Article  Google Scholar 

  • Sasthri, V. M., Krishnakumar, N., & Prabhasankar, P. (2020). Advances in conventional cereal and pseudocereal processing. In M. Pojić & U. Tiwari (Eds.), Innovative Processing Technologies for Healthy Grains (pp. 61–81). Hoboken (NJ): John Wiley & Sons. https://doi.org/10.1002/9781119470182.ch4

  • Satheesh, N., & Fanta, S. W. (2018). Review on structural, nutritional and anti-nutritional composition of Teff (Eragrostis tef) in comparison with Quinoa (Chenopodium quinoa Willd.). Cogent Food and Agriculture, 4(1). https://doi.org/10.1080/23311932.2018.1546942

  • Saturni, L., Ferretti, G., & Bacchetti, T. (2010). The gluten-free diet: Safety and nutritional quality. Nutrients, 2(1), 16–34. https://doi.org/10.3390/nu2010016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, P., Kumar, A., Kumar, V., & Tripathi, M. K. (2021). Millets, phytochemicals, and their health attributes. In A. Kumar, M. K. Tripathi, D. Joshi, & V. Kumar (Eds.), Millets and Millet Technology (First., pp. 191–218). Singapore: Springer. https://doi.org/10.1007/978-981-16-0676-2_9

  • Shaheen, S., Shorbagi, M., Lorenzo, J. M., & Farag, M. A. (2021). Dissecting dietary melanoidins: Formation mechanisms, gut interactions and functional properties. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2021.1937509

    Article  PubMed  Google Scholar 

  • Shewry, P. R. (2002). The Major seed storage proteins of spelt wheat, sorghum, millets and pseudocereals. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and Less Common Cereals: Grain Properties and Utilization Potential (pp. 1–24). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09544-7_1

  • Shi, Z., Hao, Y., Teng, C., Yao, Y., & Ren, G. (2019). Functional properties and adipogenesis inhibitory activity of protein hydrolysates from quinoa (Chenopodium quinoa Willd.). Food Science and Nutrition, 7(6), 2103–2112. https://doi.org/10.1002/fsn3.1052

  • Shreeja, K., Devi, S. S., Suneetha, W. J., & Prabhakar, B. N. (2021). Effect of germination on nutritional composition of common buckwheat (Fagopyrum esculentum Moench). International Research Journal of Pure and Applied Chemistry, 1-7. https://doi.org/10.9734/irjpac/2021/v22i130350

  • Siepmann, F. B., Ripari, V., Waszczynskyj, N., & Spier, M. R. (2018). Overview of sourdough technology: From production to marketing. Food and Bioprocess Technology, 11(2), 242–270. https://doi.org/10.1007/s11947-017-1968-2

    Article  CAS  Google Scholar 

  • Simwemba, C. G., Hoseney, R. C., Varriano-Marston, E., & Zeleznak, K. (1984). Certain B vitamin and phytic acid contents of pearl millet [Pennisetum americanum (L.) Leeke]. Journal of Agricultural and Food Chemistry , 32, 31–34. https://pubs.acs.org/sharingguidelines

  • Sarita, E. S. (2016). Potential of millets: Nutrients composition and health benefits. Journal of Scientific and Innovative Research, 5(2), 46–50

  • Sinkovič, L., Kokalj, D., Vidrih, R., & Meglič, V. (2020). Milling fractions fatty acid composition of common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum (L.) Gaertn) buckwheat. Journal of Stored Products Research, 85. https://doi.org/10.1016/j.jspr.2019.101551

  • Steffensen, S. K., Rinnan, Å., Mortensen, A. G., Laursen, B., De Troiani, R. M., Noellemeyer, E. J., et al. (2011). Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chemistry, 129(1), 131–138. https://doi.org/10.1016/j.foodchem.2011.04.044

    Article  CAS  Google Scholar 

  • Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., et al. (2015a). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 174, 502–508. https://doi.org/10.1016/j.foodchem.2014.11.040

  • Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015b). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380–388. https://doi.org/10.1016/j.foodchem.2014.06.018

  • Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., & Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience35, 100588. https://doi.org/10.1016/j.fbio.2020.100588

  • Taylor, J. R. N. (2017). Millets: Their unique nutritional and health-promoting attributes. In J. R. N. Taylor & J. M. Awika (Eds.), Gluten-Free Ancient Grains (pp. 55–103). Sawston: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100866-9.00004-2

  • Taylor, J. R. N., & Parker, M. L. (2002). Quinoa. In P. S. Belton & J. R. N. Taylor (Eds.), Pseudocereals and less common cereals: Grain properties and utilization potential (pp. 93–122). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09544-7_3

  • Terpinc, P., Cigić, B., Polak, T., Hribar, J., & Požrl, T. (2016). LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chemistry, 210, 9–17. https://doi.org/10.1016/j.foodchem.2016.04.030

    Article  CAS  PubMed  Google Scholar 

  • Thakur, P., & Kumar, K. (2019). Nutritional Importance and processing aspects of pseudo-cereals. Journal of Agricultural Engineering and Food Technology, 6(2), 155–160.

    Google Scholar 

  • Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Rizvi, Eain Hyder, Q. U., Jan, S., et al. (2021a). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrumesculentum L.). Current Research in Food Science, 4, 917–925. https://doi.org/10.1016/j.crfs.2021.11.019

  • Thakur, P., Kumar, K., & Dhaliwal, H. S. (2021b). Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Bioscience42, 101170. https://doi.org/10.1016/j.fbio.2021b.101170

  • Tömösközi, S., & Langó, B. (2017). Buckwheat: Its unique nutritional and health-promoting attributes. In J. R. N. Taylor & J. M. Awika (Eds.), Gluten-Free Ancient Grains (pp. 161–177). Sawston: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100866-9.00007-8

  • Torbica, A., Belović, M., Popović, L., Čakarević, J., Jovičić, M., & Pavličević, J. (2021). Comparative study of nutritional and technological quality aspects of minor cereals. Journal of Food Science and Technology, 58(1), 311–322. https://doi.org/10.1007/s13197-020-04544-w

    Article  CAS  PubMed  Google Scholar 

  • Udeh, H. O., Duodu, K. G., & Jideani, A. I. O. (2017). Finger millet bioactive compounds, bioaccessibility, and potential health effects - A review. Czech Journal of Food Sciences, 35(1), 7–17. https://doi.org/10.17221/206/2016-CJFS

  • Udenigwe, C. C., & Mohan, A. (2014). Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods, 8(1), 45–52. https://doi.org/10.1016/j.jff.2014.03.002

    Article  CAS  Google Scholar 

  • Upadhyaya, H. D., Vetriventhan, M., Deshpande, S. P., Sivasubramani, S., Wallace, J. G., Buckler, E. S., et al. (2015). Population genetics and structure of a global foxtail millet germplasm collection. The Plant Genome, 8(3). https://doi.org/10.3835/plantgenome2015.07.0054

  • USDA. (2022). U.S. Department of Agriculture. https://data.nal.usda.gov/dataset/composition-foods-raw-processed-prepared-usda-national-nutrient-database-standard-referenc-6.

  • Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1–6. https://doi.org/10.1016/j.cofs.2016.11.007

    Article  Google Scholar 

  • Vilcacundo, R., Miralles, B., Carrillo, W., & Hernández-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403–411. https://doi.org/10.1016/j.foodres.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  • Weckx, S., Van Kerrebroeck, S., & De Vuyst, L. (2019). Omics approaches to understand sourdough fermentation processes. International Journal of Food Microbiology, 302, 90–102. https://doi.org/10.1016/j.ijfoodmicro.2018.05.029

    Article  CAS  PubMed  Google Scholar 

  • Wrigley, C. (2017). The cereal grains: Providing our food, feed and fuel needs. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second., pp. 27–40). Sawston: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100719-8.00002-4

  • Wu, F., Wesseler, J., Zilberman, D., Russell, R. M., Chen, C., & Dubock, A. C. (2021). Allow golden rice to save lives. Proceedings of the National Academy of Sciences of the United States of America, 118(51), 15–17. https://doi.org/10.1073/pnas.2120901118

    Article  CAS  Google Scholar 

  • Xie, C., Coda, R., Chamlagain, B., Edelmann, M., Varmanen, P., Piironen, V., & Katina, K. (2021). Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. LWT137, 110431. https://doi.org/10.1016/j.lwt.2020.110431

  • Xiong, Y., Zhang, P., Warner, R. D., & Fang, Z. (2019). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025–2046. https://doi.org/10.1111/1541-4337.12506

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Luo, Z., Yang, Q., Xiao, Z., & Lu, X. (2019). Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chemistry, 294, 87–95. https://doi.org/10.1016/j.foodchem.2019.05.037

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Yang, X., Shi, Z., & Ren, G. (2014). Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. Journal of Food Science, 79(5). https://doi.org/10.1111/1750-3841.12425

  • Yao, Y., Zhu, Y., Gao, Y., Shi, Z., Hu, Y., & Ren, G. (2015). Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation. Food and Function, 6(10), 3282–3290. https://doi.org/10.1039/c5fo00716j

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L., Zhang, F., Shen, M., Jia, S., & Xie, J. (2019). Phytosterols suppress phagocytosis and inhibit inflammatory mediators via ERK pathway on LPS-triggered inflammatory responses in RAW264.7 macrophages and the correlation with their structure. Foods, 8(11). https://doi.org/10.3390/foods8110582

  • Yun, Y. R., & Park, S. H. (2018). Antioxidant activities of brown teff hydrolysates produced by protease treatment. Journal of Nutrition and Health, 51(6), 599–606. https://doi.org/10.4163/jnh.2018.51.6.599

    Article  CAS  Google Scholar 

  • Zehring, J., Reim, V., Schröter, D., Neugart, S., Schreiner, M., Rohn, S., & Maul, R. (2015). Identification of novel saponins in vegetable amaranth and characterization of their hemolytic activity. Food Research International, 78, 361–368. https://doi.org/10.1016/j.foodres.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5), H1111–H1119. https://doi.org/10.1111/1750-3841.12830

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Li, X., Ma, B., Gao, Q., Du, H., Han, Y., et al. (2017). The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 10(9), 1224–1237. https://doi.org/10.1016/j.molp.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  • Zhu, D., & Nyström, L. (2019). 7 Phytosterols. In J. Johnson & T. C. Wallace (Eds.), Whole Grains and their Bioactives: Composition and Health (First., pp. 427–466). Hoboken (NJ): John Wiley & Sons Ltd. https://doi.org/10.1016/9781119129455

  • Zhu, F. (2018). Chemical composition and food uses of teff (Eragrostis tef). Food Chemistry, 239, 402–415. https://doi.org/10.1016/j.foodchem.2017.06.101

    Article  CAS  PubMed  Google Scholar 

  • Zhu, F. (2020). Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers248, 116819. https://doi.org/10.1016/j.carbpol.2020.116819

  • Zieliński, H., Honke, J., Topolska, J., Bączek, N., Piskuła, M. K., Wiczkowski, W., & Wronkowska, M. (2020). ACE inhibitory properties and phenolics profile of fermented flours and of baked and digested biscuits from buckwheat. Foods, 9(7). https://doi.org/10.3390/foods9070847

  • Zieliński, H., Szawara-Nowak, D., Bączek, N., & Wronkowska, M. (2019). Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chemistry, 271, 291–297. https://doi.org/10.1016/j.foodchem.2018.07.182

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support is from Universidade de Vigo/CISUG. Funding received from GAIN (Axencia Galega de Innovación) for this publication (grant number IN607A2019/01).

Author information

Authors and Affiliations

Authors

Contributions

The article was devised by José M. Lorenzo. The literature search and data analysis was carried out by Rubén Agregán, Nihal Guzel, and Mustafa Guzel, who also wrote the manuscript, while Sneh Punia Bangar, Gökhan Zengin, and Manoj Kumar critically reviewed the work, actively contributing to its improvement.

Corresponding author

Correspondence to José Manuel Lorenzo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agregán, R., Guzel, N., Guzel, M. et al. The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. Food Bioprocess Technol 16, 961–986 (2023). https://doi.org/10.1007/s11947-022-02936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02936-8

Keywords

Navigation