Skip to main content
Log in

Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and Its Use of Intelligent Packaging of Orange Juice

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, a biodegradable/conducting film based on polylactic acid (PLA) modified with polyaniline, zinc oxide, and copper oxide (PLA/PAn/CuO/ZnO) was prepared. The effect of polyaniline, zinc oxide, and copper oxide on the electrical, physicochemical, antioxidant, and antimicrobial properties of polylactic acid films by different techniques such as SEM, FTIR, and TGA were investigated. Electricity conductive films were used for intelligent packaging of orange juice. The chemical and microbial properties of orange juice and the electrical conductivity of packaging films during storage time (56 days) were investigated. The results showed that the effect of polyaniline, zinc oxide, and copper oxide greatly increased the antioxidant and antimicrobial properties of polylactic acid film. Polyaniline gave the film good electrical conductivity, but zinc oxide and copper oxide had no significant effect on it. The active film used to package the orange juice increased the chemical and microbial viability of the orange juice. The electrical resistance of the conductive films used for packaging increased over time and a significant mathematical relationship was established between storage time and changes in electrical resistance, which was used to estimate the shelf life and expiration date of orange juice. Examination of the performance of the films showed that these films with an accuracy of over 90% have the ability to estimate the storage time of orange juice. Electricity conductive/antimicrobial/antioxidant film based on polylactic acid as an active and intelligent film has the ability to increase the shelf life and detect spoilage of orange juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  • Adams, L. K., Lyon, D. Y., & Alvarez, P. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527–3532.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, R. (2019). Polyaniline/ZnO nanocomposite: A novel adsorbent for the removal of Cr (VI) from aqueous solution. In Advances in Composite Materials Development. IntechOpen.

  • Alizadeh, M., Pirsa, S., & Faraji, N. (2017). Determination of lemon juice adulteration by analysis of gas chromatography profile of volatile organic compounds extracted with nano-sized polyester-polyaniline fiber. Food Analytical Methods, 10(6), 2092–2101.

    Article  Google Scholar 

  • Altankhishig, B., Matsuda, Y., Nagano-Takebe, F., Okuyama, K., Yamamoto, H., Sakurai, M., & Saito, T. (2022). Potential of fluoride-containing zinc oxide and copper oxide nanocomposites on dentin bonding ability. Nanomaterials, 12(8), 1291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amelia, M., Lincheneau, C., Silvi, S., & Credi, A. (2012). Electrochemical properties of CdSe and CdTe quantum dots. Chemical Society Reviews, 41(17), 5728–5743.

    Article  PubMed  CAS  Google Scholar 

  • Asadi, S., & Pirsa, S. (2020). Production of biodegradable film based on polylactic acid, modified with lycopene pigment and TiO2 and studying its physicochemical properties. Journal of Polymers and the Environment, 28(2), 433–444.

    Article  CAS  Google Scholar 

  • Asdagh, A., & Pirsa, S. (2020). Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. International Journal of Biological Macromolecules, 165, 156–168.

    Article  PubMed  CAS  Google Scholar 

  • ASTM. (1995). Standard test methods for water vapor transmission of material, E 96–95. Annual Book of American Standard. American Society for Testing and Material.

    Google Scholar 

  • Babu, V. J., Vempati, S., & Ramakrishna, S. (2013). Conducting polyaniline-electrical charge transportation. Materials Sciences and Applications, 4(1), 1–10.

    Article  CAS  Google Scholar 

  • Bae, D. H., Yeon, J. H., Park, S. Y., Lee, D. H., & Ha, S. D. (2006). Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Archives of Pharmacal Research, 29(4), 298–301.

    Article  PubMed  CAS  Google Scholar 

  • Beigmohammadi, F., Peighambardoust, S. H., Hesari, J., Azadmard-Damirchi, S., Peighambardoust, S. J., & Khosrowshahi, N. K. (2016). Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT-Food Science and Technology, 65, 106–111.

    Article  CAS  Google Scholar 

  • Bull, M. K., Zerdin, K., Howe, E., Goicoechea, D., Paramanandhan, P., Stockman, R., & Stewart, C. M. (2004). The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innovative Food Science & Emerging Technologies, 5(2), 135–149.

    Article  CAS  Google Scholar 

  • Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Sesame oil oxidation control by active and smart packaging system using wheat gluten/chlorophyll film to increase shelf life and detecting expiration date. European Journal of Lipid Science and Technology, 122(3), 1900385.

    Article  CAS  Google Scholar 

  • Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces b: Biointerfaces, 101, 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Dehghani, S., Peighambardoust, S. H., Peighambardoust, S. J., Hosseini, S. V., & Regenstein, J. M. (2019). Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles. Food Packaging and Shelf Life, 22, 100391.

    Article  Google Scholar 

  • Delpouve, N., Stoclet, G., Saiter, A., Dargent, E., & Marais, S. (2012). Water barrier properties in biaxially drawn poly (lactic acid) films. The Journal of Physical Chemistry B, 116(15), 4615–4625.

    Article  PubMed  CAS  Google Scholar 

  • De Souza, V. S., da Frota, H. O., & Sanches, E. A. (2018). Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity. Journal of Molecular Structure, 1153, 20–27.

    Article  Google Scholar 

  • Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742–748.

    Article  CAS  Google Scholar 

  • Erdohan, Z. Ö., Çam, B., & Turhan, K. N. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308–315.

    Article  Google Scholar 

  • Fellers, P. J. (1998). Shelf life and quality of freshly squeezed, unpasteurized, polyethylene-bottled citrus juice. Journal of Food Science, 53, 1699–1702.

    Article  Google Scholar 

  • Fernández, A., Soriano, E., López-Carballo, G., Picouet, P., Loret, E., & Gavara, R. (2009). Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Research International, 42, 1105–1112.

    Article  Google Scholar 

  • Gontard, N., Duchez, C., Cuq, B., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. Food Science and Technology, 29, 39–50.

    CAS  Google Scholar 

  • Gouveia, T. I., Biernacki, K., Castro, M. C., Gonçalves, M. P., & Souza, H. K. (2019). A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloids, 97, 105175.

    Article  CAS  Google Scholar 

  • Huang, J. C., Shetty, A. S., & Wang, M. S. (1990). Biodegradable plastics: A review. Advances in Polymer Technology, 10(1), 23–30.

    Article  CAS  Google Scholar 

  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552–571.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Li, Y., Chai, Z., & Leng, X. (2010). Study of the physical properties of whey protein isolate and gelatin composite films. Journal of Agricultural and Food Chemistry, 58, 5100–5108.

    Article  PubMed  CAS  Google Scholar 

  • Jin, T., & Niemira, B. A. (2011). Application of polylactic acid coating with antimicrobials in reduction of Escherichia coli O157: H7 and Salmonella Stanley on apples. Journal of Food Science, 76(3), M184–M188.

    Article  PubMed  CAS  Google Scholar 

  • Kampeerapappun, P., Srikulkit, K., & Pentrakoon, D. (2004). Preparation of cassava starch/montmorillonite nanocomposite film. Journal of Science Research. Chula University, 29(2), 183–197.

    CAS  Google Scholar 

  • Kashyap, G., & Gautam, M. D. (2012). Analysis of vitamin C in commercial and naturals substances by iodometric titration found in Nimar and Malwaregeion. Scientific Research in Pharmacy., 1, 77–78.

    Google Scholar 

  • Kerry, J. P., & O’grady, M. N. and Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74(1), 113–130.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N., Lienemann, S., Petsagkourakis, I., Mengistie, D. A., Kee, S., Ederth, T., Gueskine, V., Leclère, P., Lazzaroni, R., Crispin, X., & Tybrandt, K. (2020). Elastic conducting polymer composites in thermoelectric modules. Nature Communications, 11(1), 1–10.

    Google Scholar 

  • Kucekova, Z., Humpolicek, P., Kasparkova, V., Perecko, T., Lehocký, M., Hauerlandova, I., Saha, P., & Stejskal, J. (2014). Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids and Surfaces b: Biointerfaces, 116, 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, D., & Sharma, R. C. (1998). Advances in conductive polymers. European Polymer Journal, 34(8), 1053–1060.

    Article  CAS  Google Scholar 

  • Kumar, S., Boro, J. C., Ray, D., Mukherjee, A., & Dutta, J. (2019). Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 5(6), e01867.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, C. H., Park, H. J., & Lee, D. S. (2004). Influence of antimicrobial packaging on kinetics of spoilage microbial growth in milk and orange juice. Journal of Food Engineering, 65(4), 527–531.

    Article  Google Scholar 

  • Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19–29.

    Article  CAS  Google Scholar 

  • Liu, D. Y., Sui, G. X., & Bhattacharyya, D. (2014). Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Composites Science and Technology, 99, 31–36.

    Article  CAS  Google Scholar 

  • Malathi, A. N., Santhosh, K. S., & Nidoni, U. (2014). Recent trends of biodegradable polymer: Biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Current Trends in Technology and Science, 3(2), 73–79.

    Google Scholar 

  • Marra, A., Cimmino, S., & Silvestre, C. (2017). Effect of TiO2 and ZnO on PLA degradation in various media. Advances in Materials Science, 2(2), 1–8.

    Google Scholar 

  • Meydav, S., Saguy, I., & Kopelman, I. J. (1977). Browning determination in citrus products. Journal of Agricultural Food Chemistry, 25, 602–604.

  • Mohamed, A. A., Abu-Elghait, M., Ahmed, N. E., & Salem, S. S. (2020). Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biological Trace Element Research, 1–12.

  • Mohammadi, B., Pirsa, S., & Alizadeh, M. (2019). Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers and Polymer Composites, 27(8), 507–517.

    Article  CAS  Google Scholar 

  • Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166.

    Article  CAS  Google Scholar 

  • Olad, A., & Nabavi, R. (2007). Application of polyaniline for the reduction of toxic Cr (VI) in water. Journal of Hazardous Materials, 147(3), 845–851.

    Article  PubMed  CAS  Google Scholar 

  • Padmapriya, S., Harinipriya, S., Jaidev, K., Sudha, V., Kumar, D., & Pal, S. (2018). Storage and evolution of hydrogen in acidic medium by polyaniline. International Journal of Energy Research, 42(3), 1196–1209.

    Article  CAS  Google Scholar 

  • Perez-Cacho, P. R., & Rouseff, R. (2008). Processing and storage effects on orange juice aroma: A review. Journal of Agricultural and Food Chemistry, 56(21), 9785–9796.

    Article  PubMed  Google Scholar 

  • Pirsa, S. (2020). Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules, 163, 666–675.

    Article  PubMed  CAS  Google Scholar 

  • Pirsa, S., Abdolsattari, P., Peighambardoust, S. J., Fasihnia, S. H., & Peighambardoust, S. H. (2020). Investigating microbial properties of traditional Iranian white cheese packed in active LDPE films incorporating metallic and organoclay nanoparticles. Chemical Review and Letters, 3(4), 168–174.

    Google Scholar 

  • Pirsa, S., & Asadi, S. (2021). Innovative smart and biodegradable packaging for margarine based on a nano composite polylactic acid/lycopene film. Food Additives & Contaminants: Part A, 38(5), 856–869.

    Article  CAS  Google Scholar 

  • Pirsa, S., & Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering: C, 102, 798–809.

    Article  CAS  Google Scholar 

  • Pirsa, S., Shamusi, T., & Kia, E. M. (2018). Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. Journal of Applied Polymer Science, 135(34), 46617.

    Article  Google Scholar 

  • Polat, S., Fenercioglu, H., Unal Turhan, E., & Guclu, M. (2018). Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice. Journal of Food Processing and Preservation, 42(4), e13541.

    Article  Google Scholar 

  • Pyarasani, R. D., Jayaramudu, T., & John, A. (2019). Polyaniline-based conducting hydrogels. Journal of Materials Science, 54(2), 974–996.

    Article  CAS  Google Scholar 

  • Ram, L., Kumar, D., Vigneshwaran, N., & Khewle, A. (2013). Effect of ZnO nano particle containing packaging on shelf life of fresh nagpur mandarin (Citrus reticulata Blanco) segments. Journal of Biology Chemistry Research, 30, 381–386.

    Google Scholar 

  • Rezaei, M., Pirsa, S., & Chavoshizadeh, S. (2020). Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2654–2665.

    Article  CAS  Google Scholar 

  • Shi, L. E., Xing, L., Hou, B., Ge, H., Guo, X., & Tang, Z. (2010). Inorganic nano mental oxides used as anti-microorganism agents for pathogen control. Current Research, Technology and Education Topics in Applied Microbiology and Microbial, 361–368.

  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24, 770–775.

    Article  CAS  Google Scholar 

  • Sobhan, A., Muthukumarappan, K., Wei, L., Van Den Top, T., & Zhou, R. (2020). Development of an activated carbon-based nanocomposite film with antibacterial property for smart food packaging. Materials Today Communications, 23, 101–124.

    Article  Google Scholar 

  • Souza, M. C. C. D., Benassi, M. D. T., Meneghel, R. F. D. A., & Silva, R. S. D. S. F. D. (2004). Stability of unpasteurized and refrigerated orange juice. Brazilian Archives of Biology and Technology, 47, 391–397.

    Article  Google Scholar 

  • Taoukis, P. S., El Meskine, A., & Labuza, T. P. (1988). Moisture transfer and shelf life of packaged foods.

  • Tang, Z., Fan, F., Chu, Z., Fan, C., & Qin, Y. (2020). Barrier properties and characterizations of poly (lactic acid)/ZnO nanocomposites. Molecules, 25(6), 1310.

    Article  PubMed Central  CAS  Google Scholar 

  • Tawakkal, I. S., Cran, M. J., Miltz, J., & Bigger, S. W. (2014). A review of poly (lactic acid)-based materials for antimicrobial packaging. Journal of Food Science, 79(8), R1477–R1490.

    Article  PubMed  CAS  Google Scholar 

  • Therias, S., Larché, J. F., Bussière, P. O., Gardette, J. L., Murariu, M., & Dubois, P. (2012). Photochemical behavior of polylactide/ZnO nanocomposite films. Biomacromolecules, 13(10), 3283–3291.

    Article  PubMed  CAS  Google Scholar 

  • Tyuftin, A. A., & Kerry, J. P. (2020). Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties. Food Packaging and Shelf Life, 24, 100475.

    Article  Google Scholar 

  • Wang, Y., Liu, A., Han, Y., & Li, T. (2020a). Sensors based on conductive polymers and their composites: A review. Polymer International, 69(1), 7–17.

    Article  CAS  Google Scholar 

  • Wang, X., Tang, Y., Zhu, X., Zhou, Y., & Hong, X. (2020b). Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films. International Journal of Biological Macromolecules, 146, 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  • Wibowo, S., Vervoort, L., Tomic, J., Santiago, J. S., Lemmens, L., Panozzo, A., Grauwet, T., Hendrickx, M., & Van Loey, A. (2015). Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 171, 330–340.

    Article  PubMed  CAS  Google Scholar 

  • Widiarti, N., Sae, J. K., & Wahyuni, S. (2017). February. Synthesis CuO-ZnO nanocomposite and its application as an antibacterial agent. In IOP Conference Series: Materials Science and Engineering 172(1), 012036). IOP Publishing.

  • Wong, P. Y., Phang, S. W., & Baharum, A. (2020). Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films. RSC Advances, 10(65), 39693–39699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan, F., & Xue, G. (1999). Synthesis and characterization of electrically conducting polyaniline in water–oil microemulsion. Journal of Materials Chemistry, 9(12), 3035–3039.

    Article  CAS  Google Scholar 

  • Yan, L., Zheng, Y. B., Zhao, F., Li, S., Gao, X., Xu, B., & Zhao, Y. (2012). Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 41(1), 97–114.

    Article  PubMed  CAS  Google Scholar 

  • Zanni, E., Chandraiahgari, C. R., De Bellis, G., Montereali, M. R., Armiento, G., Ballirano, P., & Uccelletti, D. (2016). Zinc oxide nanorods-decorated graphene nanoplatelets: A promising antimicrobial agent against the cariogenic bacterium Streptococcus mutans. Nanomaterials, 6(10), 179.

    Article  PubMed Central  Google Scholar 

  • Zanoni, B., Pagliarini, E., Galli, A., & Laureati, M. (2005). Shelf-life prediction of fresh blood orange juice. Journal of Food Engineering, 70(4), 512–517.

    Article  Google Scholar 

Download references

Funding

This work has been supported by grants from the Urmia University Research Council and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Mahmoud Rezazadeh-Bari conceived the presented idea. Parisa Abdolsattari developed the theory and performed the computations. Sajad Pirsa verified the analytical methods. Parisa Abdolsattari discussed the results and contributed to the final manuscript. Parisa Abdolsattari wrote the manuscript and revised it.

Corresponding author

Correspondence to Sajad Pirsa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The authors whose names are listed in the manuscript certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolsattari, P., Rezazadeh-Bari, M. & Pirsa, S. Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and Its Use of Intelligent Packaging of Orange Juice. Food Bioprocess Technol 15, 2803–2825 (2022). https://doi.org/10.1007/s11947-022-02911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02911-3

Keywords

Navigation