Skip to main content
Log in

Peruvian Biopolymers (Sapote Gum, Tunta, and Potato Starches) as Suitable Coating Material to Extend the Shelf Life of Bananas

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sapote gum (SG), tunta (TS), and bitter potato starches (PS) are promising Peruvian biopolymers that have not been studied in coatings for fruit preservation. The present work aimed to study the influence of the composition of the coating based on tunta and potato starch and sapote gum on the characteristics of the baby banana in storage. Ten formulations were obtained according to a simplex-lattice mixture design (SLMD), and coating forming solution (CFS) and bananas coated were analyzed. CFS were analyzed according to turbidity, light transmission barrier, color, and viscosity. Bananas coated with CFS were analyzed according to weight loss, color index, and firmness. A total of 100% PS and 50% TS:50% PS CFS presented the higher viscosities (8873.85 and 7874.34 mPa.s, respectively), which generated thick coatings, and did not cover the banana surface homogeneously, affecting the preservation process. On the other hand, 100% TS and 100% SG, with intermediate and low viscosities (4047.68 and 58.62 mPa.s, respectively), generate thin coatings that preserved the banana characteristics after 12 days of storage (color index: −6.6 (green) and firmness ~63 N). 100%TS also presented the lower weight loss (16.53%) being the best formulation. Results were confirmed by the modeling option of SLMD, although high model fits were not achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abreu-Naranjo, R., Ramirez-Huila, W. N., Reyes Mera, J. J., Banguera, D. V., & León-Camacho, M. (2020). Physico-chemical characterisation of Capparis scabrida seed oil and pulp, a potential source of eicosapentaenoic acid. Food Bioscience, 36, 100624. https://doi.org/10.1016/J.FBIO.2020.100624

    Article  CAS  Google Scholar 

  • Amoroso, L., De France, K. J., Milz, C. I., Siqueira, G., Zimmermann, T., & Nyström, G. (2022). Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustainable Chemistry and Engineering, 10(1), 342–352. https://doi.org/10.1021/acssuschemeng.1c06345

    Article  CAS  Google Scholar 

  • Burgos, G., Zum Felde, T., Andre, C., & Kubow, S. (2019). The potato and its contribution to the human diet and health. In H. Campos & O. Ortiz (Eds.), The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind (pp. 1–518). Springer Nature. https://doi.org/10.1007/978-3-030-28683-5

  • Coelho, P. B., Neto, A. F., Costa, M. S., Filho, A. P., da Silva, T. D., & Sánchez-Sáenz, C. M. (2021). Application of biodegradable coatings on ‘Tommy Atkins’ mango for export. DYNA, 88(219), 197–202. https://doi.org/10.15446/dyna.v88n219.95148

  • Del-Valle, V., Hernández-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91(4), 751–756. https://doi.org/10.1016/J.FOODCHEM.2004.07.002

    Article  CAS  Google Scholar 

  • Du, Y., Yang, F., Yu, H., Yao, W., & Xie, Y. (2022). Controllable fabrication of edible coatings to improve the match between barrier and fruits respiration through layer-by-layer assembly. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-022-02848-7

    Article  Google Scholar 

  • Dwivany, F. M., Aprilyandi, A. N., Suendo, V., & Sukriandi, N. (2020). Carrageenan edible coating application prolongs Cavendish banana shelf life. International Journal of Food Science. https://doi.org/10.1155/2020/8861610

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO. (2022). Production/Yield quantities of Bananas in World + (Total). Retrieved May 30, 2022, from https://www.fao.org/faostat/en/#data/QCL/visualize

  • Ferreira, D. C. M., Molina, G., & Pelissari, F. M. (2020). Effect of edible coating from cassava starch and babassu flour (Orbignya phalerata) on Brazilian cerrado fruits quality. Food and Bioprocess Technology, 13(1), 172–179. https://doi.org/10.1007/s11947-019-02366-z

    Article  CAS  Google Scholar 

  • García, J. C., Balaguera-López, H. E., & Herrera, A. A. O. (2012). Conservación del fruto de banano bocadillo (Musa AA Simmonds) con la aplicación de permanganato de potasio (KMnO4). Revista Colombiana de Ciencias Hortícolas, 6(2), 161–171.

    Article  Google Scholar 

  • Gonzaga, A., Rimaycuna, J., Cruz, G. J. F., Bravo, N., Gómez, M. M., Solis, J. L., & Santiago, J. (2019). Influence of natural plasticizers derived from forestry biomass on shrimp husk chitosan films. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1173/1/012006

    Article  Google Scholar 

  • Havik, G., Catenazzi, A., & Holmgren, M. (2014). Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests. PLoS ONE, 9(1), e86381. https://doi.org/10.1371/JOURNAL.PONE.0086381

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera, E. L., Feijoo, C. Y., Alfaro, R., Solís, J. L., Gómez, M. M., Keiski, R. L., & Cruz, G. J. F. (2018). Biochar based on residual biomasses and its influence over seedling emergence and growth in vivarium of Capparis scabrida (sapote). Scientia Agropecuaria, 9(4), 569–577. https://doi.org/10.17268/sci.agropecu.2018.04.13

  • Herz-Castro, K. B. (2007). Análisis físico-químico de la goma exudada de la especie sapote Capparis scabrida H.B.K., proveniente de los bosques secos de lambayeque [Universidad Nacional Agraria la Molina]. Retrieved June 2, 2022, from https://hdl.handle.net/20.500.12996/403

  • Kim, J., Choi, J. Y., Kim, J., & Moon, K. D. (2022). Effect of edible coating with Morus alba root extract and carboxymethyl cellulose for enhancing the quality and preventing the browning of banana (Musa acuminata Cavendish) during storage. Food Packaging and Shelf Life, 31(3), 100809. https://doi.org/10.1016/j.fpsl.2022.100809

    Article  CAS  Google Scholar 

  • Lai, T. Y., Chen, C. H., & Lai, L. S. (2013). Effects of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the quality of minimally processed carrots. Food and Bioprocess Technology, 6(1), 249–258. https://doi.org/10.1007/s11947-011-0707-3

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, J., Wu, H., Gou, M., Jing, L., Zhao, K., Zhang, B., Zhang, G., & Li, W. (2019). Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures. International Journal of Biological Macromolecules, 133, 346–353. https://doi.org/10.1016/j.ijbiomac.2019.04.111

    Article  CAS  PubMed  Google Scholar 

  • Lundgren, G. A., Braga, S. D. P., de Albuquerque, T. M. R., Árabe Rimá de Oliveira, K., Tavares, J. F., Vieira, W. A. D. S., Câmara, M. P. S., & de Souza, E. L. (2022). Antifungal effects of Conyza bonariensis (L.) Cronquist essential oil against pathogenic Colletotrichum musae and its incorporation in gum Arabic coating to reduce anthracnose development in banana during storage. Journal of Applied Microbiology, 132(1), 547–561. https://doi.org/10.1111/jam.15244

    Article  CAS  PubMed  Google Scholar 

  • Martínez, P., Betalleluz-Pallardel, I., Cuba, A., Peña, F., Cervantes-Uc, J. M., Uribe-Calderón, J. A., & Velezmoro, C. (2022). Effects of natural freeze-thaw treatment on structural, functional, and rheological characteristics of starches isolated from three bitter potato cultivars from the Andean region. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2022.107860

    Article  Google Scholar 

  • Martínez, P., Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2, 100030. https://doi.org/10.1016/j.fochx.2019.100030

    Article  CAS  Google Scholar 

  • Nguyen, T. T., Huynh Nguyen, T. T., Tran Pham, B. T., Van Tran, T., Bach, L. G., Bui Thi, P. Q., & Ha Thuc, C. N. (2021). Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packaging and Shelf Life, 29, 100740. https://doi.org/10.1016/j.fpsl.2021.100740

    Article  CAS  Google Scholar 

  • Oyom, W., Xu, H., Liu, Z., Long, H., Li, Y., Zhang, Z., Bi, Y., Tahergorabi, R., & Prusky, D. (2022). Effects of modified sweet potato starch edible coating incorporated with cumin essential oil on storage quality of ‘early crisp.’ Lwt. https://doi.org/10.1016/j.lwt.2021.112475

    Article  Google Scholar 

  • Pan, S. Y., Chen, C. H., & Lai, L. S. (2013). Effect of Tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the qualities of fresh-cut apples. Food and Bioprocess Technology, 6, 2059–2069. https://doi.org/10.1007/s11947-012-0907-5

    Article  CAS  Google Scholar 

  • Pelissari, F. M., Andrade-Mahecha, M. M., do Amaral Sobral, P. J., & Menegalli, F. C. (2013). Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT - Food Science and Technology, 52(1), 1–11. https://doi.org/10.1016/j.lwt.2013.01.011

    Article  CAS  Google Scholar 

  • Pino, J. A., Winterhalter, P., & Castro-Benítez, M. (2017). Odour-active compounds in baby banana fruit (Musa acuminata AA Simmonds cv. Bocadillo). International Journal of Food Properties, 20(sup2), 1448–1455. https://doi.org/10.1080/10942912.2017.1349142

    Article  CAS  Google Scholar 

  • Procesed tubers. Dehydrated potato. Tunta. Requirements and definitions, Pub. L. No. NTP 011.400:2007, 1 (2007).

  • Pu, Y. -Y., Sun, D. -W., Buccheri, M., Grassi, M., Cattaneo, T. M. P., & Gowen, A. (2019). Ripeness classification of bananito fruit (Musa acuminata, AA): A comparison study of visible spectroscopy and hyperspectral imaging. Food Analytical Methods, 12, 1693–1704. https://doi.org/10.1007/s12161-019-01506-7

    Article  Google Scholar 

  • Rojas-Bravo, M., Rojas-Zenteno, E. G., Hernández-Carranza, P., Ávila-Sosa, R., Aguilar-Sánchez, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2019). A potential application of mango (Mangifera indica L. cv Manila) peel powder to increase the total phenolic compounds and antioxidant capacity of edible films and coatings. Food and Bioprocess Technology, 12(9), 1584–1592. https://doi.org/10.1007/s11947-019-02317-8

    Article  CAS  Google Scholar 

  • Romo, M., & Rosina, M. (2012). Floristic composition of Peruvian plantcutter (Phytotoma raimondii) habitat. Revista Peruana de Biologia, 19(3), 261–266. https://doi.org/10.15381/rpb.v19i3.1003

  • Soto-Muñoz, L., Martínez-Blay, V., Pérez-Gago, M. B., Fernández-Catalán, A., Argente-Sanchis, M., & Palou, L. (2022). Starch-based antifungal edible coatings to control sour rot caused by Geotrichum citri-aurantii and maintain postharvest quality of ‘Fino’ lemon. Journal of the Science of Food and Agriculture, 102(2), 794–800. https://doi.org/10.1002/JSFA.11414

    Article  PubMed  Google Scholar 

  • Soto-Muñoz, L., Palou, L., Argente-Sanchis, M., Ramos-López, M. A., & Pérez-Gago, M. B. (2021). Optimization of antifungal edible pregelatinized potato starch-based coating formulations by response surface methodology to extend postharvest life of ‘Orri’ mandarins. Scientia Horticulturae, 288, 110394. https://doi.org/10.1016/J.SCIENTA.2021.110394

    Article  Google Scholar 

  • Steffe, J. F. (1996). Rheological Methods in food process engineering (F. Press (ed.); 2nd ed.). Freeman Press. https://doi.org/10.1016/0260-8774(94)90090-6

  • Stounbjerg, L., Vestergaard, C., Andreasen, B., & Ipsen, R. (2019). Associative phase separation of potato protein and anionic polysaccharides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 566, 104–112. https://doi.org/10.1016/j.colsurfa.2019.01.012

    Article  CAS  Google Scholar 

  • Suseno, N., Savitri, E., Sapei, L., & Padmawijaya, K. S. (2014). Improving shelf-life of Cavendish banana using chitosan edible coating. Procedia Chemistry, 9, 113–120. https://doi.org/10.1016/j.proche.2014.05.014

    Article  CAS  Google Scholar 

  • Tejada-Mendoza, O. D. P. (2020). Efecto del recubrimiento de goma de sapote (Capparis scabridda) en las caracteristicas del tomate (Solanum lycopersicum L.) durante su almacenamiento [Universidad Nacional Agraria La Molina]. Retrieved June 2, 2022, from http://repositorio.lamolina.edu.pe/handle/UNALM/3271

  • Thakur, R., Pristijono, P., Bowyer, M., Singh, S. P., Scarlett, C. J., Stathopoulos, C. E., & Vuong, Q. V. (2019). A starch edible surface coating delays banana fruit ripening. Lwt, 100, 341–347. https://doi.org/10.1016/j.lwt.2018.10.055

    Article  CAS  Google Scholar 

  • Wantat, A., Rojsitthisak, P., & Seraypheap, K. (2021). Inhibitory effects of high molecular weight chitosan coating on ‘Hom Thong’ banana fruit softening. Food Packaging and Shelf Life. https://doi.org/10.1016/j.fpsl.2021.100731

    Article  Google Scholar 

  • Zhao, S., Jia, R., Yang, J., Dai, L., Ji, N., Xiong, L., & Sun, Q. (2022). Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. International Journal of Biological Macromolecules, 205, 419–429. https://doi.org/10.1016/J.IJBIOMAC.2022.02.101

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., Chen, J., Tan, K. B., Chen, M., & Zhu, Y. (2022). Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana. Food Chemistry, 374, 131794. https://doi.org/10.1016/j.foodchem.2021.131794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Programa Nacional de Investigación Científica y Estudios Avanzados (CONCYTEC-PROCIENCIA) for the research Grant/Award Number 049-2019-FONDECYT-BM-INC.INV for the financial support

Funding

This study was financially supported by the Programa Nacional de Investigación Científica y Estudios Avanzados (CONCYTEC-PROCIENCIA) Grant/Award Number 049–2019-FONDECYT-BM-INC.INV.

Author information

Authors and Affiliations

Authors

Contributions

E. Vélez-Erazo, conceptualization, methodology, formal analysis, visualization, and writing — review and editing original draft. M. S. Carbajal-Sandoval, formal analysis, and visualization. A. Sánchez-Pizarro, formal analysis. E. F. Peña-Carrasco, formal analysis. P. Martínez-Tapia, project administration, funding acquisition, and writing — review and editing. C. Velezmoro-Sánchez, supervision, conceptualization, and writing — review and editing.

Corresponding author

Correspondence to Eliana M. Vélez-Erazo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez-Erazo, E.M., Carbajal-Sandoval, M.S., Sanchez-Pizarro, A.L. et al. Peruvian Biopolymers (Sapote Gum, Tunta, and Potato Starches) as Suitable Coating Material to Extend the Shelf Life of Bananas. Food Bioprocess Technol 15, 2562–2572 (2022). https://doi.org/10.1007/s11947-022-02902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02902-4

Keywords

Navigation