Skip to main content

Advertisement

Log in

Influence of Superheated Steam Temperature and Moisture Exchange on the Inactivation of Geobacillus stearothermophilus Spores in Wheat Flour-Coated Surfaces

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sanitation in dry food processing environments is a major challenge for the industry. The influence of superheated steam (SH) temperatures (125 to 250 °C) on the inactivation of spores on selected coupon surfaces (stainless steel, rubber, and concrete) coated with wheat flour as a model food soil residue was investigated using a bench scale superheating apparatus. Wheat flour inoculated with Geobacillus stearothermophilus (7.62 ± 0.12 log CFU/g) coated on the coupon surfaces served as the model food residue. Among the surfaces tested, temperature of concrete increased faster [time constant (τ) < 89.0 s] than that of stainless steel (τ < 173.6 s). As a consequence, wheat flour coated on concrete dehydrated faster [moisture diffusivity (Dm) > 1.17 × 10−4 mm2/s] than those on the stainless steel (Dm > 0.76 × 10−4 mm2/s). Hence, Geobacillus stearothermophilus spores suspended on stainless steel were inactivated faster than that of concrete and rubber (p < 0.05). The time required for a 5-log reduction at 250 °C were 180 s and 240 s, on stainless steel and concrete surfaces, respectively. A mathematical model that considered surface temperature, food residue moisture content, and SH inversion temperature adequately described spore inactivation during SH treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

B f :

Bias factor

D m :

Moisture diffusivity (mm2/s)

D ref :

D Value at a reference condition (s)

L :

Thickness (mm)

M :

Moisture content (% d.b.)

M cond :

Moisture content after initial condensation (% d.b.)

M eq :

Equilibrium moisture content (% d.b.)

M i :

Initial moisture content (% d.b.)

MR :

Moisture ratio

M ref :

Reference moisture content (% d.b.)

N :

Surviving microbial count (CFU/g)

N 0 :

Initial microbial count (CFU/g)

N m :

Estimated microbial count (CFU/g)

n :

Number of data points

p :

Number of parameters

RH :

Relative humidity of superheated steam (%)

RH ref :

Reference relative humidity (%)

RSME:

Root mean square error

T :

Temperature (°C)

t :

Total treatment time (s)

t cond :

Condensation time (s)

T iv :

Inversion temperature (°C)

T ref :

Reference temperature (°C)

T SH :

Superheated steam temperature (°C)

\({z}_{T}\) :

Temperature sensitivity of Geobacillus stearothermophilus spore (°C)

\({z}_{M}\) :

Moisture content sensitivity of G. stearothermophilus spore (% d.b.)

\({z}_{RH}\) :

Relative humidity sensitivity of G. stearothermophilus spore (%)

α :

A constant for initial condensation during superheated steam treatment

β :

A constant for drying during superheated steam treatment

τ :

Time constant (s)

D value :

Decimal reduction time (s)

References

  • Acar, C., Dincer, I., & Mujumdar, A. (2020). A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Drying Technology, 1–27.

  • Annon. (2017). The truth about steam cleaning. European Cleaning Journalhttp://www.europeancleaningjournal.com/magazine/articles/special-features/the-truth-about-steam-cleaning. Access Date May 10 2022

  • AOAC. (1990). Official methods of analysis (15th ed.). The Association of Official Analytical Chemists.

    Google Scholar 

  • Ban, G. H., Yoon, H., & Kang, D. H. (2014). A comparison of saturated steam and superheated steam for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel. Food Control, 40, 344–350.

    Article  CAS  Google Scholar 

  • Baranyi, J., Pin, C., & Ross, T. (1999). Validating and comparing predictive models. International Journal of Food Microbiology, 48(3), 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Beeby, C., & Potter, O. E. (1985). Steam drying. Proc. 4th Int. Drying Symp., May 5–8, Kyoto, Japan.

  • Bergman, T. L., Incropera, F. P., Lavine, A. S., & DeWitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons.

    Google Scholar 

  • Beuchat, L. R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon, F., Fanning, S., Joosten, H. M., & Ter Kuile, B. H. (2013). Low–water activity foods: Increased concern as vehicles of foodborne pathogens. Journal of Food Protection, 76(1), 150–172.

    Article  PubMed  Google Scholar 

  • Björk, H., & Rasmuson, A. (1995). Moisture equilibrium of wood and bark chips in superheated steam. Fuel, 74(12), 1887–1890.

    Article  Google Scholar 

  • Burnett, S. L., & Hagberg, R. (2014). Dry cleaning, wet cleaning, and alternatives to processing plant hygiene and sanitation. In J. B. Gurtler, M. P. Michael, & J. L. Kornacki (Eds.), The Microbiological Safety of Low Water Activity Foods and Spices (pp. 85–96). Springer.

    Chapter  Google Scholar 

  • Cai, S., Phinney, D. M., Heldman, D. R., & Snyder, A. B. (2020). All treatment parameters affect environmental surface sanitation efficacy, but their relative importance depends on the microbial target. Applied and Environmental Microbiology, 87(1), e01748-e1820.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. Clarendon Press.

    Google Scholar 

  • Casulli, K. E., Dolan, K. D., & Marks, B. P. (2021). Modeling the effects of product temperature, product moisture, and process humidity on thermal inactivation of Salmonella in pistachios during hot-air heating. Journal of Food Protection, 84(1), 47–57.

    Article  PubMed  Google Scholar 

  • Casulli, K. E., Garces-Vega, F. J., Dolan, K. D., Ryser, E. T., Harris, L. J., & Marks, B. P. (2018). Impact of process temperature, humidity, and initial product moisture on thermal inactivation of Salmonella Enteritidis PT 30 on pistachios during hot-air heating. Journal of Food Protection, 81(8), 1351–1356.

    Article  PubMed  Google Scholar 

  • Cenkowski, S., Pronyk, C., Zmidzinska, D., & Muir, W. E. (2007). Decontamination of food products with superheated steam. Journal of Food Engineering, 83(1), 68–75.

    Article  CAS  Google Scholar 

  • Cunningham, S. E., Magee, T. R. A., Mcminn, W. A. M., Gaze, J. E., & Richardson, P. S. (2007). Thermal resistance of Bacillus stearothermophilus spores in dried pasta at different stages of rehydration. Journal of Food Processing and Preservation, 31(4), 420–432.

    Article  Google Scholar 

  • Das, A., Jurk, R., Stöckelhuber, K. W., & Heinrich, G. (2007). Rubber curing chemistry governing the orientation of layered silicate. Express Polymer Letters, 1, 717–723.

    Article  CAS  Google Scholar 

  • Hamawand, I., Yusaf, T., & Bennett, J. (2014). Study and modelling drying of banana slices under superheated steam. Asia-Pacific Journal of Chemical Engineering, 9(4), 591–603.

    CAS  Google Scholar 

  • Hu, Y., Nie, W., Hu, X., & Li, Z. (2016). Microbial decontamination of wheat grain with superheated steam. Food Control, 62, 264–269.

    Article  CAS  Google Scholar 

  • Jo, Y., Bae, H., Kim, S. S., Ban, C., Kim, S. O., & Choi, Y. J. (2019). Inactivation of Bacillus cereus ATCC 14579 spore on garlic with combination treatments of germinant compounds and superheated steam. Journal of Food Protection, 82(4), 691–695.

    Article  CAS  PubMed  Google Scholar 

  • Karimi, F. (2010). Applications of superheated steam for the drying of food products. International Agrophysics, 24, 195–204.

    Google Scholar 

  • Kim, C. S. (1975). Thermophysical properties of stainless steels. Argonne National Laboratory.

    Book  Google Scholar 

  • Kim, W. J., Kim, S. H., & Kang, D. H. (2020). Thermal and non-thermal treatment effects on Staphylococcus aureus biofilms formed at different temperatures and maturation periods. Food Research International, 137, 109432.

    Article  CAS  PubMed  Google Scholar 

  • Kondjoyan, A., & Portanguen, S. (2008). Effect of superheated steam on the inactivation of Listeria innocua surface-inoculated onto chicken skin. Journal of Food Engineering, 87(2), 162–171.

    Article  Google Scholar 

  • López, M., González, I., Condón, S., & Bernardo, A. (1996). Effect of pH heating medium on the thermal resistance of Bacillus stearothermophilus spores. International Journal of Food Microbiology, 28(3), 405–410.

    Article  PubMed  Google Scholar 

  • Li, J., Liang, Q. C., & Bennamoun, L. (2016). Superheated steam drying: Design aspects, energetic performances, and mathematical modeling. Renewable and Sustainable Energy Reviews, 60, 1562–1583.

    Article  Google Scholar 

  • Marinos-Kouris, D., & Maroulis, Z. B. (2020). Transport properties in the drying of solids. In A. S. Mujumdar (Ed.), Handbook of Industrial Drying (2nd ed., pp. 113–159). CRC Press.

    Chapter  Google Scholar 

  • Marriott, N. G., Schilling, M. W., & Gravani, R. B. (2016). Principles of food sanitation (6th ed.). Springer.

    Google Scholar 

  • Moerman, F., & Mager, K. (2016). Cleaning and disinfection in dry food processing facilities. Handbook of hygiene control in the food industry (pp. 521–554). Woodhead Publishing.

    Chapter  Google Scholar 

  • Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1), 112.

    Article  Google Scholar 

  • Oztoprak, N., Kizilates, F., & Percin, D. (2019). Comparison of steam technology and a two-step cleaning (water/detergent) and disinfecting (1,000 resp. 5,000 ppm hypochlorite) method using microfiber cloth for environmental control of multidrug-resistant organisms in an intensive care unit. GMS Hygiene and Infection Control, 14, Doc15. https://doi.org/10.3205/dgkh000330

  • Park, H. W., Han, W. Y., & Yoon, W. B. (2018). Drying characteristics of soybean (Glycine max) using continuous drying and intermittent drying. International Journal of Food Engineering, 14(9–10).

  • Park, H. W., Xu, J., Balasubramaniam, V. M., & Snyder, A. B. (2021). The effect of water activity and temperature on the inactivation of Enterococcus faecium in peanut butter during superheated steam sanitation treatment. Food Control, 125, 107942.

    Article  CAS  Google Scholar 

  • Pinedo, B., Hadfield, M., Tzanakis, I., Conte, M., & Anand, M. (2018). Thermal analysis and tribological investigation on TPU and NBR elastomers applied to sealing applications. Tribology International, 127, 24–36.

    Article  CAS  Google Scholar 

  • Prachayawarakorn, S., Soponronnarit, S., Wetchacama, S., & Jaisut, D. (2002). Desorption isotherms and drying characteristics of shrimp in superheated steam and hot air. Drying Technology, 20(3), 669–684.

    Article  Google Scholar 

  • Pronyk, C., Cenkowski, S., & Muir, W. E. (2004). Drying foodstuffs with superheated steam. Drying Technology, 22(5), 899–916.

    Article  Google Scholar 

  • Ramachandran, R. P., Bourassa, J., Paliwal, J., & Cenkowski, S. (2017). Effect of temperature and velocity of superheated steam on initial condensation of distillers’ spent grain pellets during drying. Drying Technology, 35(2), 182–192.

    Article  CAS  Google Scholar 

  • Schwartze, J. P., & Brocker, S. (2002). A theoretical explanation for the inversion temperature. Chemical Engineering Journal, 86, 61–67.

    Article  CAS  Google Scholar 

  • Swasdisevi, T., Devahastin, S., Thanasookprasert, S., & Soponronnarit, S. (2013). Comparative evaluation of hot-air and superheated-steam impinging stream drying as novel alternatives for paddy drying. Drying Technology, 31(6), 717–725.

    Article  CAS  Google Scholar 

  • Tang, Z., & Cenkowski, S. (2000). Dehydration dynamics of potatoes in superheated steam and hot air. Canadian Agricultural Engineering, 42(1), 43–49.

    Google Scholar 

  • Tang, Z., & Cenkowski, S. (2001). Equilibrium moisture content of spent grains in superheated steam under atmospheric pressure. Transactions of the ASAE, 44(5), 1261.

    Article  Google Scholar 

  • Van Deventer, H. C., & Heijmans, R. M. H. (2001). Drying with superheated steam. Drying Technology, 19(8), 2033–2045.

    Article  Google Scholar 

  • Van Doornmalen, J., & Kopinga, K. (2008). Review of surface steam sterilization for validation purposes. American Journal of Infection Control, 36(2), 86–92.

    Article  PubMed  Google Scholar 

  • Volchkov, E. P., Leontiev, A. I., & Makarova, S. N. (2007). Finding the inversion temperature for water evaporation into an air-steam mixture. International Journal of Heat and Mass Transfer, 50(11–12), 2101–2106.

    Article  CAS  Google Scholar 

  • Wang, Y., Wu, A., Zhang, L., Jin, F., & Liu, X. (2018). Investigating the effect of solid components on yield stress for cemented paste backfill via uniform design. Advances in Materials Science and Engineering, 2018, 3839174.

    Google Scholar 

  • Wood, J. P., Lemieux, P., Betancourt, D., Kariher, P., & Gatchalian, N. G. (2010). Dry thermal resistance of Bacillus anthracis (Sterne) spores and spores of other Bacillus species: Implications for biological agent destruction via waste incineration. Journal of Applied Microbiology, 109(1), 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Yang, R., Xie, Y., Lombardo, S. P., & Tang, J. (2021). Oil protects bacteria from humid heat in thermal processing. Food Control, 123, 107690.

    Article  CAS  Google Scholar 

  • Zehfuß, J., Robert, F., Spille, J., & Razafinjato, R. N. (2020). Evaluation of Eurocode 2 approaches for thermal conductivity of concrete in case of fire. Civil Engineering Design, 2(3), 58–71.

    Article  Google Scholar 

  • Zhang, J., Hou, D., Gao, Y., & Wei, S. (2011). Determination of moisture diffusion coefficient of concrete at early age from interior humidity measurements. Drying Technology, 29(6), 689–696.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was conducted at The Ohio State University Food Safety Engineering Laboratory, Center for Clean Food Process Technology Development (u.osu.edu/foodsafetyeng/) in collaboration with Dr. Snyder laboratory, Cornell University. Authors thank Molly Davis, The Ohio State University, for her assistance with proofreading the manuscript. References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University and Cornell University is implied.

Funding

The authors gratefully acknowledge the financial support for the study from the USDA National Institute of Food and Agriculture, AFRI project 2019–68015-29232 (Transforming sanitation strategies in dry food manufacturing environments).

Author information

Authors and Affiliations

Authors

Contributions

Hyeon Woo Park: Conceptualization, data curation, formal analysis, methodology, and writing–original draft. V. M. Balasubramaniam: Conceptualization, data curation, formal analysis, funding acquisition, methodology, project administration, resources, supervision, and writing–review and editing. Abigail B. Snyder: Conceptualization, data curation, formal analysis, funding acquisition, methodology, resources, supervision, and writing–review and editing. J. A. Sekhar: Resources and writing–review and editing.

Corresponding author

Correspondence to V. M. Balasubramaniam.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 123 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.W., Balasubramaniam, V.M., Snyder, A.B. et al. Influence of Superheated Steam Temperature and Moisture Exchange on the Inactivation of Geobacillus stearothermophilus Spores in Wheat Flour-Coated Surfaces. Food Bioprocess Technol 15, 1550–1562 (2022). https://doi.org/10.1007/s11947-022-02830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02830-3

Keywords

Navigation