Skip to main content
Log in

Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of co-encapsulation of broccoli sprout extract (BSE) nanoliposomes with basil seed gum (BSG) on the physicochemical and morphological properties and release of sulforaphane (SF) from them. To obtain nanocapsules, first, nanoliposomes were prepared using lecithin and different levels of BSE (0.5, 1.0, and 1.5% w/w), and then they were coated with different concentrations of BSG (0.5, 1.0, and 1.5% w/w). Nanocapsules were prepared by the thin-film rehydration method. The nanocapsules containing 1% BSE coated with 0.5% BSG (L1BSG0.5) had the lowest particle size (39.60 nm), polydispersity index (PDI) (0.279), and the high-efficiency yields (EY) (97.96%); therefore, it was selected as the best sample and its other characteristics were evaluated. These nanocapsules had high zeta potential (−71.16 mV), so they showed good stability, and also had a spherical shape with low particle aggregation and had a proper particle size distribution. The FTIR spectroscopy results showed a physical interaction between the components of the nanocapsules, and also no new chemical bonding was observed. Encapsulation of BSE also reduced the rate of SF release from the capsules compared to the free SF. Release of SF occurred faster in the simulated intestinal conditions (pH = 7.4) than in the simulated gastric conditions (pH = 1.2). Accordingly, the nanocapsules can be used in the food and pharmaceutical industries as a good SF delivery system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the author, Zahra Azarashkan (Azarashkan.za@gmail.com), upon reasonable request.

References

  • Abedinia, A., Alimohammadi, F., Teymori, F., Razgardani, N., Saeidi Asl, M. R., Ariffin, F., Mohammadi Nafchi, A., Huda, N., & Roslan, J. (2021). Characterization and cell viability of probiotic/prebiotics film based on duck feet gelatin: A novel poultry gelatin as a suitable matrix for probiotics. Foods, 10(8), 1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abedinia, A., Mohammadi Nafchi, A., Sharifi, M., Ghalambor, P., Oladzadabbasabadi, N., Ariffin, F., & Huda, N. (2020). Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends in Food Science & Technology, 104, 14–26.

    Article  CAS  Google Scholar 

  • Ajeeshkumar, K. K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C. N., & Benjakul, S. (2021). Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1280–1306.

    Article  CAS  PubMed  Google Scholar 

  • Akbari, E., & Namazian, M. (2020). Sulforaphane: A natural product against reactive oxygen species. Computational and Theoretical Chemistry, 1183, 112850.

    Article  CAS  Google Scholar 

  • Akcicek, A., Bozkurt, F., Akgül, C., & Karasu, S. (2021). Encapsulation of olive pomace extract in rocket seed gum and chia seed gum nanoparticles: Characterization, antioxidant activity and oxidative stability. Foods, 10(8), 1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Jubete, L., Valverde, J., Kehoe, K., Reilly, K., Rai, D. K., & Barry-Ryan, C. (2014). Development of a novel functional soup rich in bioactive sulforaphane using broccoli (Brassica oleracea L. ssp. italica) florets and byproducts. Food and Bioprocess Technology, 7(5), 1310–1321.

  • Asefi, N., Hamishehkar, H., Rofegarinejad, L., & Pezeshki, A. (2021). Production of Cornus mas extract nano carrier and release evaluation of nano encapsulated ‘bioactive compounds in semi digestive condition. Food Science and Technology, 18(110), 141–152.

    Google Scholar 

  • Azizi Naser, S., Amiri-Besheli, B., & Sharifi-Mehr, S. (2011). The isolation and determination of sulforaphane from broccoli tissues by reverse phase-high performance liquid chromatography. Journal of the Chinese Chemical Society, 58(7), 906–910.

    Article  Google Scholar 

  • Bucurescu, A., Blaga, A. C., Estevinho, B. N., & Rocha, F. (2018). Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food and Bioprocess Technology, 11(10), 1795–1806.

    Article  CAS  Google Scholar 

  • Cedrowski, J., Dąbrowa, K., Przybylski, P., Krogul-Sobczak, A., & Litwinienko, G. (2021). Antioxidant activity of two edible isothiocyanates: Sulforaphane and erucin is due to their thermal decomposition to sulfenic acids and methylsulfinyl radicals. Food Chemistry, 353, 129213.

    Article  CAS  PubMed  Google Scholar 

  • Cristiano, M. C., Froiio, F., Spaccapelo, R., Mancuso, A., Nisticò, S. P., Udongo, B. P., Fresta, M., & Paolino, D. (2020). Sulforaphane-loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases. Pharmaceutics, 12(1), 6.

    Article  CAS  Google Scholar 

  • Danafar, H., Sharafi, A., Kheiri Manjili, H., & Andalib, S. (2017). Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharmaceutical Development and Technology, 22(5), 642–651.

    Article  CAS  PubMed  Google Scholar 

  • Do, D. P., Pai, S. B., Rizvi, S. A. A., & D’Souza, M. J. (2010). Development of sulforaphane-encapsulated microspheres for cancer epigenetic therapy. International Journal of Pharmaceutics, 386(1), 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Estevinho, B. N., Horciu, I. –L., Blaga, A. –C., & Rocha, F. (2021). Development of controlled delivery functional systems by microencapsulation of different extracts of plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food and Bioprocess Technology, 1–15.

  • Etemadi, A., Alizadeh, R., & Sirousazar, M. (2020). The influence of natural basil seed gum coats on the kinetics of osmotic dehydration of apple rings. Food and Bioprocess Technology, 13(9), 1505–1515.

    Article  CAS  Google Scholar 

  • Fahami, A., & Fathi, M. (2018). Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocolloids, 81, 31–38.

    Article  CAS  Google Scholar 

  • Fahey, J. W., & Kensler, T. W. (2021). The challenges of designing and implementing clinical trials with broccoli sprouts… and turning evidence into public health action. Frontiers in Nutrition, 8, 183.

    Article  CAS  Google Scholar 

  • Fahey, J. W., Wade, K. L., Wehage, S. L., Holtzclaw, W. D., Liu, H., Talalay, P., Fuchs, E., & Stephenson, K. K. (2017). Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Molecular Nutrition & Food Research, 61(4), 1600766.

    Article  CAS  Google Scholar 

  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology, 21(10), 510–523.

    Article  CAS  Google Scholar 

  • Fangmeier, M., Lehn, D. N., Maciel, M. J., & de Souza, C. F. V. (2019). Encapsulation of bioactive ingredients by extrusion with vibrating technology: Advantages and challenges. Food and Bioprocess Technology, 12(9), 1472–1486.

    Article  Google Scholar 

  • Faridi Esfanjani, A., Assadpour, E., & Jafari, S. M. (2018). Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology, 76, 56–66.

    Article  CAS  Google Scholar 

  • Fatouros, D. G., & Antimisiaris, S. G. (2002). Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: A study with prednisolone, diazepam, and griseofulvin. Journal of Colloid and Interface Science, 251(2), 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Favela-González, K. M., Hernández-Almanza, A. Y., & De la Fuente-Salcido, N. M. (2020). The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry, 44(10), e13414.

    Article  CAS  Google Scholar 

  • Fernandes, L., Casal, S., Pereira, J. A., Ramalhosa, E., & Saraiva, J. A. (2017). Effect of high hydrostatic pressure (HHP) treatment on edible flowers’ properties. Food and Bioprocess Technology, 10(5), 799–807.

    Article  Google Scholar 

  • Garcia-Ibañez, P., Roses, C., Agudelo, A., Milagro, F. I., Barceló, A. M., Viadel, B., Nieto, J. A., Moreno, D. A., & Carvajal, M. (2021). The Influence of Red Cabbage Extract Nanoencapsulated with Brassica Plasma Membrane Vesicles on the Gut Microbiome of Obese Volunteers. Foods, 10(5), 1038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Saldaña, J. S., Campas-Baypoli, O. N., López-Cervantes, J., Sánchez-Machado, D. I., Cantú-Soto, E. U., & Rodríguez-Ramírez, R. (2016). Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chemistry, 201, 94–100.

    Article  PubMed  CAS  Google Scholar 

  • González, F., Quintero, J., Del Río, R., & Mahn, A. (2021). Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli (Brassica oleracea var. italica). Molecules, 26(13), 4042.

  • Gu, Z.-X., Guo, Q.-H., & Gu, Y.-J. (2012). Factors Influencing Glucoraphanin and Sulforaphane Formation in Brassica Plants: A Review. Journal of Integrative Agriculture, 11(11), 1804–1816.

    Article  CAS  Google Scholar 

  • Guimarães, D., Noro, J., Silva, C., Cavaco-Paulo, A., & Nogueira, E. (2019). Protective effect of saccharides on freeze-dried liposomes encapsulating drugs. Frontiers in Bioengineering and Biotechnology, 7, 424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guldiken, B., Linke, A., Capanoglu, E., Boyacioglu, D., Kohlus, R., Weiss, J., & Gibis, M. (2019). Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 246, 42–50.

    Article  CAS  Google Scholar 

  • Gulzar, S., & Benjakul, S. (2020). Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chemistry, 310, 125916.

    Article  CAS  PubMed  Google Scholar 

  • Hadad, S., & Goli, S. A. H. (2019). Improving oxidative stability of flaxseed oil by encapsulation in electrospun flaxseed mucilage nanofiber. Food and Bioprocess Technology, 12(5), 829–838.

    Article  CAS  Google Scholar 

  • Hadavi, R., Jafari, S. M., & Katouzian, I. (2020). Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization. International Journal of Biological Macromolecules, 164, 4046–4053.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, S. M. B., & Mousavi Khaneghah, A. (2017). Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings, 110, 35–41.

    Article  CAS  Google Scholar 

  • Hezaveh, H., & Muhamad, I. I. (2013a). Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chemical Engineering Research and Design, 91(3), 508–519.

    Article  CAS  Google Scholar 

  • Hezaveh, H., & Muhamad, I. I. (2013b). Effect of MgO nanofillers on burst release reduction from hydrogel nanocomposites. Journal of Materials Science: Materials in Medicine, 24(6), 1443–1453.

    CAS  PubMed  Google Scholar 

  • Joye, I. J., & McClements, D. J. (2013). Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends in Food Science & Technology, 34(2), 109–123.

    Article  CAS  Google Scholar 

  • Kheiri Manjili, H., Sharafi, A., Attari, E., & Danafar, H. (2017). Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1728–1739.

    Article  CAS  PubMed  Google Scholar 

  • Klug, T. V., Martínez-Hernández, G. B., Collado, E., Artés, F., & Artés-Hernández, F. (2018). Effect of microwave and high-pressure processing on quality of an innovative broccoli hummus. Food and Bioprocess Technology, 11(8), 1464–1477.

    Article  CAS  Google Scholar 

  • Koshani, R., & Jafari, S. M. (2019). Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 270, 123–146.

    Article  CAS  PubMed  Google Scholar 

  • Kurd, F., Fathi, M., & Shekarchizadeh, H. (2019). Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: Characterization and release modeling. Food Bioscience, 32, 100475.

    Article  CAS  Google Scholar 

  • Lai, Q. D., Doan, N. T. T., & Nguyen, T. T. T. (2021). Influence of Wall Materials and Homogenization Pressure on Microencapsulation of Rice Bran Oil. Food and Bioprocess Technology, 1–12.

  • Li, M., Du, C., Guo, N., Teng, Y., Meng, X., Sun, H., Li, S., Yu, P., & Galons, H. (2019). Composition design and medical application of liposomes. European Journal of Medicinal Chemistry, 164, 640–653.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H., Yuan, Q. P., Dong, H. R., & Liu, Y. M. (2006). Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. Journal of Food Composition and Analysis, 19(5), 473–476.

    Article  CAS  Google Scholar 

  • López-Cervantes, J., Tirado-Noriega, L. G., Sánchez-Machado, D. I., Campas-Baypoli, O. N., Cantú-Soto, E. U., & Núñez-Gastélum, J. A. (2013). Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. International Journal of Food Science & Technology, 48(11), 2267–2275.

    Google Scholar 

  • Luca, A., Cilek, B., Hasirci, V., Sahin, S., & Sumnu, G. (2014). Storage and baking stability of encapsulated sour cherry phenolic compounds prepared from micro-and nano-suspensions. Food and Bioprocess Technology, 7(1), 204–211.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Hashemi, M., & Masoud Hosseini, S. (2016). Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT - Food Science and Technology, 71, 347–355.

    Article  CAS  Google Scholar 

  • Mohammed, A. N., Ishwarya, S. P., & Nisha, P. (2021). Nanoemulsion versus microemulsion systems for the encapsulation of beetroot extract: Comparison of physicochemical characteristics and betalain stability. Food and Bioprocess Technology, 14(1), 133–150.

    Article  CAS  Google Scholar 

  • Mozafari, M. R., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z. E., & Singh, H. (2006). Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038–2045.

    Article  CAS  Google Scholar 

  • Muhammad, D. R. A., Sedaghat Doost, A., Gupta, V., bin Sintang, M. D., Van de Walle, D., Van der Meeren, P., & Dewettinck, K. (2020). Stability and functionality of xanthan gum–shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocolloids, 100, 105377.

  • Naji-Tabasi, S., & Razavi, S. M. A. (2017). Functional properties and applications of basil seed gum: An overview. Food Hydrocolloids, 73, 313–325.

    Article  CAS  Google Scholar 

  • Naji-Tabasi, S., Razavi, S. M. A., Mohebbi, M., & Malaekeh-Nikouei, B. (2016). New studies on basil (Ocimum bacilicum L.) seed gum: Part I-Fractionation, physicochemical and surface activity characterization. Food Hydrocolloids, 52, 350–358.

    Article  CAS  Google Scholar 

  • Perduca, M. J., Spotti, M. J., Santiago, L. G., Judis, M. A., Rubiolo, A. C., & Carrara, C. R. (2013). Rheological characterization of the hydrocolloid from Gleditsia amorphoides seeds. LWT - Food Science and Technology, 51(1), 143–147.

    Article  CAS  Google Scholar 

  • Pu, C., Tang, W., Li, X., Li, M., & Sun, Q. (2019). Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocolloids, 87, 29–37.

    Article  CAS  Google Scholar 

  • Radünz, M., Hackbart, H. C. D. S., Bona, N. P., Pedra, N. S., Hoffmann, J. F., Stefanello, F. M., & Da Rosa, Z. E. (2020). Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids and Surfaces b: Biointerfaces., 192, 111020.

    Article  PubMed  CAS  Google Scholar 

  • Radünz, M., Mota Camargo, T., dos Santos Hackbart, H. C., Blank, J. P., Hoffmann, J. F., Moro Stefanello, F., & da Rosa, Z. E. (2021). Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities. Food Chemistry, 339, 128075.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra-Leos, M. Z., Leyva-Porras, C., Toxqui-Terán, A., & Espinosa-Solis, V. (2021). Physicochemical Properties and Antioxidant Activity of Spray-Dry Broccoli (Brassica oleracea var Italica) Stalk and Floret Juice Powders. Molecules, 26(7), 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbagh, F., Kiarostami, K., Khatir, N. M., Rezania, S., Muhamad, I. I., & Hosseini, F. (2021). Effect of zinc content on structural, functional, morphological, and thermal properties of kappa-carrageenan/NaCMC nanocomposites. Polymer Testing, 93, 106922.

    Article  CAS  Google Scholar 

  • Sabbagh, F., Kiarostami, K., Mahmoudi Khatir, N., Rezania, S., & Muhamad, I. I. (2020). Green synthesis of Mg0. 99 Zn0. 01O nanoparticles for the fabrication of κ-Carrageenan/NaCMC hydrogel in order to deliver catechin. Polymers, 12(4), 861.

  • Sadeghi, A. R., Pourahmad, R., & Mokhtare, M. (2017). Enrichment of probiotic yogurt with broccoli sprout extract and its effect on Helicobacter pylori. Applied Food Biotechnology, 4(1), 53–57.

    Google Scholar 

  • Saffarionpour, S., & Diosady, L. L. (2021). Multiple emulsions for enhanced delivery of vitamins and iron micronutrients and their application for food fortification. Food and Bioprocess Technology, 1–39.

  • Salehi, M., Moslehishad, M., & Hosseini, S. M. (2021). Physicochemical Properties and Stability of Encapsulated Ferulago angulata subsp. carduchorum Essential Oil using Polymer Coating. Journal of Medicinal plants and By-product, 10(1), 1–10.

  • Sarabandi, K., & Jafari, S. M. (2020). Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Food Chemistry, 310, 125951.

    Article  CAS  PubMed  Google Scholar 

  • Sharifzadeh, G., Hezaveh, H., Muhamad, I. I., Hashim, S., & Khairuddin, N. (2020). Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. Materials Science and Engineering: C, 110, 110609.

    Article  CAS  Google Scholar 

  • Shinde, T., Sun-Waterhouse, D., & Brooks, J. (2014). Co-extrusion encapsulation of probiotic lactobacillus acidophilus alone or together with apple skin polyphenols: An aqueous and value-added delivery system using alginate. Food and Bioprocess Technology, 7(6), 1581–1596.

    Article  CAS  Google Scholar 

  • Soares, A., Carrascosa, C., & Raposo, A. (2017). Influence of different cooking methods on the concentration of glucosinolates and vitamin C in broccoli. Food and Bioprocess Technology, 10(8), 1387–1411.

    Article  CAS  Google Scholar 

  • Taheri, A., & Jafari, S. M. (2019). Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 269, 277–295.

    Article  CAS  PubMed  Google Scholar 

  • Tavakolipour, H., & Mokhtarian, M. (2016). Nano-encapsulation of pomegranate seed oil by liquid-liquid dispersion method and oil releasing in gastric simulated conditions. Iranian Journal of Nutrition Sciences & Food Technology, 11(2), 75–84.

    Google Scholar 

  • Tian, G., Li, Y., Yuan, Q., Cheng, L., Kuang, P., & Tang, P. (2015). The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying. Carbohydrate Polymers, 122, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Trinh, T. H., Shaari, K. Z. K., Basit, A., & Azeem, B. (2014). Effect of particle size and coating thickness on the release of urea using multi-diffusion model. International Journal of Chemical Engineering and Applications, 5(1), 58.

    Article  CAS  Google Scholar 

  • Wu, H., Liang, H., Yuan, Q., Wang, T., & Yan, X. (2010). Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydrate Polymers, 82(3), 613–617.

    Article  CAS  Google Scholar 

  • Wu, Y., Zou, L., Mao, J., Huang, J., & Liu, S. (2014). Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohydrate Polymers, 102, 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Xing, J.-J., Cheng, Y.-L., Chen, P., Shan, L., Ruan, R., Li, D., & Wang, L.-j. (2019). Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica oleracea) seeds. Powder Technology, 358, 103–109.

    Article  CAS  Google Scholar 

  • Yu, J. Y., Chuesiang, P., Shin, G. H., & Park, H. J. (2021). Post-processing techniques for the improvement of liposome stability. Pharmaceutics, 13(7), 1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambrano, V., Bustos, R., & Mahn, A. (2019). Insights about stabilization of sulforaphane through microencapsulation. Heliyon, 5(11), e02951.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author, Zahra Azarashkan, contributed to conceptualization, formal analysis, investigation, methodology, writing (original draft of the manuscript), and software. The corresponding author, Ali Motamedzadegan, directed the research and contributed to review of the manuscript. Azade Ghorbani-HasanSaraei, Somayeh Rahaiee, and Pourya Biparva helped in the conceptualization and data curation.

Corresponding author

Correspondence to Ali Motamedzadegan.

Ethics declarations

Conflict of Interest

We declare that the results of this study have not been previously published, are not being considered for publication elsewhere, and are published by all authors. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• We encapsulated the broccoli sprout extract (BSE) with nanoliposomes and basil seed gum (BSG) by the thin-film rehydration method successfully.

• The coated BSE had good polydispersity index and the high efficiency yields.

• The encapsulated BSE showed more rate of sulforaphane release in the simulated intestinal conditions (pH = 7.4) than in the simulated gastric conditions (pH=1.2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarashkan, Z., Motamedzadegan, A., Ghorbani-HasanSaraei, A. et al. Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. Food Bioprocess Technol 15, 1573–1587 (2022). https://doi.org/10.1007/s11947-022-02826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02826-z

Keywords

Navigation