Skip to main content

Advertisement

Log in

Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

To meet the demands for more effective and ecofriendly food packaging strategies, the potential of nisin-loaded rhamnolipid functionalized nanofillers (rhamnosomes) has been explored after embedding in hydroxypropyl-methylcellulose (HPMC) and κ-carrageenan (κ-CR)-based packaging films. It was observed that intrinsically active rhamnosomes based nanofillers greatly improved the mechanical and optical properties of nano-active packaging (NAP) films. Incorporation of rhamnosomes resulted in higher tensile strength (5.16 ± 0.06 MPa), Young’s modulus (2777 ± 0.77 MPa), and elongation (2.58 ± 0.03%) for NAP than active packaging containing free nisin (2.96 ± 0.03 MPa, 1107 ± 0.67 MPa, 1.48 ± 0.06%, respectively). NAP demonstrated a homogenous distribution of nanofillers in the biopolymer matrix as elucidated by scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) confirmed that NAP prepared with nisin-loaded rhamnosomes was thermally stable even above 200 °C. Differential scanning calorimetry (DSC) analyses revealed that addition of nisin in nanofillers resulted in a slight increase in Tg (108.40 °C), indicating thermal stability of NAP. Fourier transform infrared spectroscopy (FTIR) revealed slight shift in all characteristic bands of nano-active packaging, which indicated the embedding of rhamnosomes inside the polymer network without any chemical interaction. Finally, when tested on chicken breast filets and cheese slices under refrigerated storage conditions, NAP demonstrated broad-spectrum antimicrobial activity (up to 4.5 log unit reduction) and inhibited the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. These results suggest that HPMC and κ-CR-based NAP containing functionalized nanofillers can serve as an innovative packaging material for the food industry to improve the safety, quality, and shelf-life of dairy and meat products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

Data will be made available on reasonable request.

References

  • Aboumanei, M. H., Mahmoud, A. F., & Motaleb, M. (2021). Formulation of chitosan coated nanoliposomes for the oral delivery of colistin sulfate: In vitro characterization, 99mTc-radiolabeling and in vivo biodistribution studies. Drug Development and Industrial Pharmacy, 47(4), 626–635.

    Article  CAS  Google Scholar 

  • Aljasir, S. F., Gensler, C., Sun, L., & D'Amico, D. J. (2020). The efficacy of individual and combined commercial protective cultures against Listeria monocytogenes, Salmonella, O157 and non-O157 shiga toxin-producing Escherichia coli in growth medium and raw milk. Food Control, 109, 106924.

  • Almasi, H., Jahanbakhsh Oskouie, M., & Saleh, A. (2020). A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition, 1–21.

  • Alnaief, M., Obaidat, R., & Mashaqbeh, H. (2018). Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydrate Polymers, 180, 264–275.

    Article  CAS  Google Scholar 

  • Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology, 12(7), 1205–1219.

    Article  CAS  Google Scholar 

  • Amjadi, S., Nouri, S., Yorghanlou, R. A., & Roufegarinejad, L. (2020). Development of hydroxypropyl methylcellulose/sodium alginate blend active film incorporated with Dracocephalum moldavica L. essential oil for food preservation. Journal of Thermoplastic Composite Materials, 0892705720962153.

  • Aydogdu, A., Yildiz, E., Ayhan, Z., Aydogdu, Y., Sumnu, G., & Sahin, S. (2019). Nanostructured poly (lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry. European Polymer Journal, 112, 477–486.

    Article  CAS  Google Scholar 

  • Aziz, S. G. –G., & Almasi, H. (2018). Physical Characteristics, Release Properties, and Antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11(8), 1552–1565.

  • Bahrami, A., Mokarram, R. R., Khiabani, M. S., Ghanbarzadeh, B., & Salehi, R. (2019). Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological Macromolecules, 129, 1103–1112.

    Article  CAS  Google Scholar 

  • Balqis, A. I., Khaizura, M. N., Russly, A., & Hanani, Z. N. (2017). Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. International Journal of Biological Macromolecules, 103, 721–732.

    Article  Google Scholar 

  • Becerril, R., Nerín, C., & Silva, F. (2020). Encapsulation systems for antimicrobial food packaging components: An update. Molecules, 25(5), 1134.

    Article  CAS  Google Scholar 

  • Bigi, F., Haghighi, H., Siesler, H. W., Licciardello, F., & Pulvirenti, A. (2021). Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocolloids, 106979.

  • Bodbodak, S., Shahabi, N., Mohammadi, M., Ghorbani, M., & Pezeshki, A. (2021). Development of a novel antimicrobial electrospun nanofiber based on polylactic acid/hydroxypropyl methylcellulose containing pomegranate peel extract for active food packaging. Food and Bioprocess Technology.

  • Chen, J., Lü, Z., An, Z., Ji, P., & Liu, X. (2019). Antibacterial activities of sophorolipids and nisin and their combination against foodborne pathogen Staphylococcus aureus. European Journal of Lipid Science and Technology.

  • Chi, W., Cao, L., Sun, G., Meng, F., Zhang, C., Li, J., & Wang, L. (2020). Developing a highly pH-sensitive ĸ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. Journal of Cleaner Production, 244, 118862.

  • Cui, H., Yuan, L., & Lin, L. (2017). Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydrate Polymers., 177, 156–164.

    Article  CAS  Google Scholar 

  • de Freitas Ferreira, J., Vieira, E. A., & Nitschke, M. (2018). The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Research International.

  • de Souza, R. C., de Moraes, J. O., Haberbeck, L. U., de Araújo, P. H. H., Ribeiro, D. H. B., & Carciofi, B. A. M. (2021). Antibacterial activity of low-density polyethylene and low-density polyethylene-co-maleic anhydride films incorporated with ZnO nanoparticles. Food and Bioprocess Technology., 14(10), 1872–1884.

    Article  Google Scholar 

  • Dharmalingam, K., & Anandalakshmi, R. (2019). Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. International Journal of Biological Macromolecules., 134, 815–829.

    Article  CAS  Google Scholar 

  • Food & Drug Administration. (2011). Food additive status list. Silver Spring, MD, USA: US Food and Drug Administration.

    Google Scholar 

  • Göksen, G., Fabra, M. J., Ekiz, H. I., & López-Rubio, A. (2020). Phytochemical-loaded electrospun nanofibers as novel active edible films: Characterization and antibacterial efficiency in cheese slices. Food Control, 112, 107133.

  • Gorjian, H., Raftani Amiri, Z., Mohammadzadeh Milani, J., & Ghaffari Khaligh, N. (2021). Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A comparative study. Food Chemistry, 342, 128342.

  • Gottardo, S., Mech, A., Drbohlavová, J., Małyska, A., Bøwadt, S., Riego Sintes, J., & Rauscher, H. (2021). Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact, 21, 100297.

  • Hasheminya, S.-M., Rezaei Mokarram, R., Ghanbarzadeh, B., Hamishekar, H., & Kafil, H. S. (2018). Physicochemical, mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packaging and Shelf Life, 17, 196–204.

    Article  Google Scholar 

  • Heesterbeek, D., Martin, N., Velthuizen, A., Duijst, M., Ruyken, M., Wubbolts, R., Rooijakkers, S., & Bardoel, B. (2019). Complement-dependent outer membrane perturbation sensitizes gram-negative bacteria to gram-positive specific antibiotics. Scientific Reports, 9(1), 3074.

    Article  CAS  Google Scholar 

  • Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chemistry, 136(3–4), 1490–1495.

  • Ili Balqis, A. M., Nor Khaizura, M. A. R., Russly, A. R., & Nur Hanani, Z. A. (2017). Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. International Journal of Biological Macromolecules, 103, 721–732.

    Article  CAS  Google Scholar 

  • Jafarzadeh, S., & Jafari, S. M. (2020). Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Critical Reviews in Food Science and Nutrition, 1–19.

  • Jain, A., Kamble, R., & Patil, S. (2021). Electrospray technology as a probe for single step fabrication of glipizide loaded nanocochleates with enhanced bioavailability. Journal of Dispersion Science and Technology, 1–9.

  • Kamkar, A., Molaee-aghaee, E., Khanjari, A., Akhondzadeh-basti, A., Noudoost, B., Shariatifar, N., Alizadeh Sani, M., & Soleimani, M. (2021). Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. International Journal of Food Microbiology, 342, 109071.

  • Khodayari, M., Basti, A. A., Khanjari, A., Misaghi, A., Kamkar, A., Shotorbani, P. M., & Hamedi, H. (2019). Effect of poly (lactic acid) films incorporated with different concentrations of Tanacetum balsamita essential oil, propolis ethanolic extract and cellulose nanocrystals on shelf life extension of vacuum-packed cooked sausages. Food Packaging and Shelf Life, 19, 200–209.

    Article  Google Scholar 

  • Klangmuang, P., & Sothornvit, R. (2016). Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids, 61, 609–616.

    Article  CAS  Google Scholar 

  • Kochańska, E., Łukasik, R. M., & Dzikuć, M. (2021). New circular challenges in the development of take-away food packaging in the COVID-19 period. Energies, 14(15), 4705.

    Article  Google Scholar 

  • Lopes, N. A., Pinilla, C. M. B., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1–9.

    Article  CAS  Google Scholar 

  • Malik, G. K., & Mitra, J. (2021). Zinc oxide nanoparticle synthesis, characterization, and their effect on mechanical, barrier, and optical properties of HPMC-based edible film. Food and Bioprocess Technology, 14(3), 441–456.

    Article  CAS  Google Scholar 

  • Marín-Silva, D. A., Rivero, S., & Pinotti, A. (2019). Chitosan-based nanocomposite matrices: Development and characterization. International Journal of Biological Macromolecules, 123, 189–200.

    Article  Google Scholar 

  • Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-Traub, C., Schmucker, J., Vodnar, D. C., Dulf, F. V., Socaci, S. A., Fărcaș, A., & Mureșan, C. I. (2021). Protein-based films and coatings for food industry applications. Polymers, 13(5), 769.

    Article  CAS  Google Scholar 

  • Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. –M. (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178.

  • Motelica, L., Ficai, D., Ficai, A., Oprea, O. C., Kaya, D. A., & Andronescu, E. (2020). Biodegradable antimicrobial food packaging: Trends and perspectives. Foods, 9(10), 1438.

    Article  CAS  Google Scholar 

  • Motta, J. F. G., de Souza, A. R., Gonçalves, S. M., Madella, D. K. S. F., de Carvalho, C. W. P., Vitorazi, L., & de Melo, N. R. (2020). Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. Food and Bioprocess Technology, 13(12), 2082–2093.

    Article  CAS  Google Scholar 

  • Nazir, S., & Azad, Z. A. A. (2019). Food nanotechnology: An emerging technology in food processing and preservation. In A. Malik, Z. Erginkaya, & H. Erten (Eds.), Health and Safety Aspects of Food Processing Technologies (pp. 567–576). Cham: Springer.

    Chapter  Google Scholar 

  • Niaz, T., Shabbir, S., Noor, T., & Imran, M. (2019). Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. LWT, 116, 108583.

  • Niaz, T., Shabbir, S., Noor, T., Abbasi, R., Raza, Z. A., & Imran, M. (2018). Polyelectrolyte multicomponent colloidosomes loaded with nisin Z for enhanced antimicrobial activity against foodborne resistant pathogens. Frontiers in Microbiology, 8, 2700.

  • Ortiz-Duarte, G., Martínez-Hernández, G. B., Casillas-Peñuelas, R., & Pérez-Cabrera, L. E. (2021). Evaluation of biopolymer films containing silver–chitosan nanocomposites. Food and Bioprocess Technology, 14(3), 492–504.

    Article  CAS  Google Scholar 

  • Paula, G. A., Benevides, N. M. B., Cunha, A. P., de Oliveira, A. V., Pinto, A. M. B., Morais, J. P. S., & Azeredo, H. M. C. (2015). Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Food Hydrocolloids, 47, 140–145.

    Article  CAS  Google Scholar 

  • Pérez, P. F., Ollé Resa, C. P., Gerschenson, L. N., & Jagus, R. J. (2021). Addition of zein for the improvement of physicochemical properties of antimicrobial tapioca starch edible film. Food and Bioprocess Technology, 14(2), 262–271.

    Article  Google Scholar 

  • Polat, T. G., Duman, O., & Tunc, S. (2020). Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 124987.

  • Priyadarshi, R., & Negi, Y. S. (2017). Effect of varying filler concentration on zinc oxide nanoparticle embedded chitosan films as potential food packaging material. Journal of Polymers and the Environment, 25(4), 1087–1098.

    Article  CAS  Google Scholar 

  • Rehman, A., Jafari, S. M., Aadil, R. M., Assadpour, E., Randhawa, M. A., & Mahmood, S. (2020). Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science & Technology, 101, 106–121.

    Article  CAS  Google Scholar 

  • Sahraee, S., Ghanbarzadeh, B., Milani, J. M., & Hamishehkar, H. (2017). Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food and Bioprocess Technology, 10(8), 1441–1453.

    Article  CAS  Google Scholar 

  • Samsalee, N., & Sothornvit, R. (2020). Characterization of food application and quality of porcine plasma protein–based films incorporated with chitosan or encapsulated turmeric oil. Food and Bioprocess Technology, 13(3), 488–500.

    Article  CAS  Google Scholar 

  • Santos, J. C., Sousa, R. C., Otoni, C. G., Moraes, A. R., Souza, V. G., Medeiros, E. A., ... & Soares, N. F. (2018). Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science & Emerging Technologies, 48, 179–194.

  • Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2020). Improving the moisture barrier and mechanical properties of semi-refined carrageenan films. Journal of Applied Polymer Science, 137(41), 49238.

    Article  CAS  Google Scholar 

  • Seyedabadi, M. M., Rostami, H., Jafari, S. M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 40, 100857.

  • Shiroodi, S. G., Nesaei, S., Ovissipour, M., Al-Qadiri, H. M., Rasco, B., & Sablani, S. (2016). Biodegradable polymeric films incorporated with nisin: Characterization and efficiency against listeria monocytogenes. Food and Bioprocess Technology, 9(6), 958–969.

    Article  CAS  Google Scholar 

  • Souza, M. P., Vaz, A. F. M., Costa, T. B., Cerqueira, M. A., De Castro, C. M. M. B., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2018). Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food and Bioprocess Technology, 11(5), 1050–1060.

    Article  CAS  Google Scholar 

  • Sun, G., Chi, W., Zhang, C., Xu, S., Li, J., & Wang, L. (2019). Developing a green film with pH-sensitivity and antioxidant activity based on к-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids, 94, 345–353.

    Article  CAS  Google Scholar 

  • Swaroop, C., & Shukla, M. (2019). Development of blown polylactic acid-MgO nanocomposite films for food packaging. Composites Part A: Applied Science and Manufacturing, 124, 105482.

  • Tan, C., Wang, J., & Sun, B. (2021). Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnology Advances, 48, 107727.

  • Tibolla, H., Pelissari, F. M., Martins, J. T., Lanzoni, E. M., Vicente, A. A., Menegalli, F. C., & Cunha, R. L. (2019). Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 207, 169–179.

    Article  CAS  Google Scholar 

  • Wrona, M., Cran, M. J., Nerín, C., & Bigger, S. W. (2017). Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers, 156, 108–117.

    Article  CAS  Google Scholar 

  • Zhong, H., Gao, X., Cheng, C., Liu, C., Wang, Q., & Han, X. (2020). The structural characteristics of seaweed polysaccharides and their application in gel drug delivery systems. Marine Drugs, 18(12), 658.

    Article  CAS  Google Scholar 

  • Zhu, M., Ge, L., Lyu, Y., Zi, Y., Li, X., Li, D., & Mu, C. (2017). Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydrate Polymers., 174, 1051–1058.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Higher Education Commission, Pakistan (NRPU grant No. 20–4260/R&D/HEC/14/127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1433 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaz, T., Shabbir, S., Noor, T. et al. Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. Food Bioprocess Technol 15, 1284–1298 (2022). https://doi.org/10.1007/s11947-022-02815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02815-2

Keywords

Profiles

  1. Saima Shabbir