Skip to main content
Log in

Bruise Detection and Classification of Strawberries Based on Thermal Images

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The detection of bruises plays a vital role in the quality evaluation of strawberries. This study aimed to detect strawberry bruises based on thermal images and classify bruises using a convolutional neural network (CNN). A simple active thermal imaging system was used to capture 2903 thermal images collected from 400 strawberries over 5 days. Moreover, the temperature difference between the bruised area and the unbruised area of the strawberry over time was analyzed. Some of the most advanced pretrained CNN models and the optimized CNN model were evaluated for the classification of unbruised and bruised strawberries based on collected thermal images. The results show that the accuracy of the optimized CNN network is 0.98, which is much higher than the accuracy of the pretrained models. Thus, this study provides a high degree of accuracy in the classification of unbruised and bruised strawberries using the optimized CNN model based on its thermal images, indicating which can be an effective method of detecting and classifying strawberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  • Badia-Melis, R., Qian, J. P., Fan, B. L., Hoyos-Echevarria, P., Ruiz-García, L., & Yang, X. T. (2016). Artificial neural networks and thermal image for temperature prediction in apples. Food and Bioprocess Technology, 9(7), 1089–1099. https://doi.org/10.1007/s11947-016-1700-7

    Article  CAS  Google Scholar 

  • Baranowski, P., Mazurek, W., Wozniak, J., & Majewska, U. (2012). Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering, 110(3), 345–355. https://doi.org/10.1016/j.jfoodeng.2011.12.038

    Article  Google Scholar 

  • Bhargava, A., & Bansal, A. (2019). Automatic detection and grading of multiple fruits by machine learning. Food Analytical Methods, 13(3), 751–761. https://doi.org/10.1007/s12161-019-01690-6

    Article  Google Scholar 

  • Cho, B. H., Koyama, K., Díaz, E., & Koseki, S. (2020). Determination of “Hass” avocado ripeness during storage based on smartphone image and machine learning model. Food and Bioprocess Technology, 13(5), 1–9.

    Google Scholar 

  • Cortés, V., Cubero, S., Blasco, J., Aleixos, N., & Talens, P. (2019). In-line application of visible and near-infrared diffuse reflectance spectroscopy to identify apple varieties. Food and Bioprocess Technology.

  • Döner, D., Çokgezme, Ö. F., Çevik, M., Engin, M., & İçier, F. (2020). Thermal image processing technique for determination of temperature distributions of minced beef thawed by ohmic and conventional methods. Food and Bioprocess Technology, 13(11), 1878–1892. https://doi.org/10.1007/s11947-020-02530-w

    Article  CAS  Google Scholar 

  • Doosti-Irani, O., Golzarian, M. R., Aghkhani, M. H., Sadrnia, H., & Doosti-Irani, M. (2016). Development of multiple regression model to estimate the apple’s bruise depth using thermal maps. Postharvest Biology and Technology, 116, 75–79. https://doi.org/10.1016/j.postharvbio.2015.12.024

    Article  Google Scholar 

  • Elmasry, G., Ning, W., & Vigneault, C. (2009). Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52(1), 1–8.

    Article  Google Scholar 

  • ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98–107. https://doi.org/10.1016/j.jfoodeng.2006.10.016

    Article  CAS  Google Scholar 

  • Ezeanaka, M. C., Nsor-Atindana, J., & Zhang, M. (2019). Online low-field nuclear magnetic resonance (LF-NMR) and Magnetic resonance imaging (MRI) for food quality optimization in food processing. Food and Bioprocess Technology, 12(2).

  • Ezhilan, M., Nesakumar, N., Karanam, J., Chakravarthy, S., & Rayappan, J. (2020). A multiple approach combined with portable electronic nose for assessment of post-harvest sapota contamination by foodborne pathogens. Food and Bioprocess Technology, 13(11).

  • FAO. (2021). FAOSTAT. Retrieved 29 Nov 2021, from https://www.fao.org/faostat/en/#data/QCL

  • Ferreira, M. D., Sargent, S. A., Brecht, J. K., & Chandler, C. K. (2009). Strawberry bruising sensitivity depends on the type of force applied, cooling method, and pulp temperature. HortScience, 44(7), 1953–1956.

    Article  Google Scholar 

  • Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Chitosan coating effect on storability and quality of fresh strawberries. Journal of Food Science (wiley-Blackwell), 56(6), 1618–1620. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x

    Article  Google Scholar 

  • Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Journal of Machine Learning Research, 15, 315–323.

    Google Scholar 

  • Guelpa, A., Plessis, A. D., Kidd, M., & Manley, M. (2015). Non-destructive estimation of maize (Zea mays L.) kernel hardness by means of an x-ray micro-computed tomography (μCT) density calibration. Food and Bioprocess Technology.

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

  • Jiang, H., Li, X., & Safara, F. (2021). IoT-based agriculture: Deep learning in detecting apple fruit diseases. Microprocessors and Microsystems. https://doi.org/10.1016/j.micpro.2021.104321

    Article  Google Scholar 

  • Jiang, H., Zhang, M., Mujumdar, A. S., & Lim, R. -X. (2012). Analysis of temperature distribution and SEM images of microwave freeze drying banana chips. Food and Bioprocess Technology, 6(5), 1144–1152. https://doi.org/10.1007/s11947-012-0801-1

    Article  CAS  Google Scholar 

  • Jiang, Y., Shiina, T., Nakamura, N., & Nakahara, A. (2001). Electrical conductivity evaluation of postharvest strawberry damage. Journal of Food Science, 66(9), 1392–1395. https://doi.org/10.1111/j.1365-2621.2001.tb15220.x

    Article  CAS  Google Scholar 

  • Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

    Article  Google Scholar 

  • Kim, G., Kim, G. -H., Park, J., Kim, D. -Y., & Cho, B. -K. (2014). Application of infrared lock-in thermography for the quantitative evaluation of bruises on pears. Infrared Physics & Technology, 63, 133–139. https://doi.org/10.1016/j.infrared.2013.12.015

    Article  Google Scholar 

  • Kuzy, J., Jiang, Y., & Li, C. (2018). Blueberry bruise detection by pulsed thermographic imaging. Postharvest Biology and Technology, 136, 166–177. https://doi.org/10.1016/j.postharvbio.2017.10.011

    Article  Google Scholar 

  • Li, Z., & Thomas, C. (2014). Quantitative evaluation of mechanical damage to fresh fruits. Trends in Food Science & Technology, 35(2), 138–150. https://doi.org/10.1016/j.tifs.2013.12.001

    Article  CAS  Google Scholar 

  • Lin, P., Li, X. L., Chen, Y. M., & He, Y. (2018). A deep convolutional neural network architecture for boosting image discrimination accuracy of rice species. Food and Bioprocess Technology, 11(4), 765–773. https://doi.org/10.1007/s11947-017-2050-9

    Article  Google Scholar 

  • Liu, Q., Sun, K., Peng, J., Xing, M., Pan, L., & Tu, K. (2018). Identification of bruise and fungi contamination in strawberries using hyperspectral imaging technology and multivariate analysis. Food Analytical Methods, 11(5), 1518–1527. https://doi.org/10.1007/s12161-017-1136-3

    Article  Google Scholar 

  • Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2008). Wheat class identification using thermal imaging. Food and Bioprocess Technology, 3(3), 450–460. https://doi.org/10.1007/s11947-008-0110-x

    Article  Google Scholar 

  • Masateru, N., Tallada, J. G., & Taiichi, K. (2006). Bruise detection using NIR hyperspectral imaging for strawberry (Fragaria * ananassa Duch.). Environmental Control in Biology, 44(2), 133–142.

    Article  Google Scholar 

  • Mohd Ali, M., Hashim, N., Aziz, S. A., & Lasekan, O. (2020). Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends in Food Science & Technology, 105, 176–185. https://doi.org/10.1016/j.tifs.2020.09.003

    Article  CAS  Google Scholar 

  • Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., & Zhang, Y. -D. (2020). Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2020.111204

    Article  Google Scholar 

  • Prem Kumar, M. K., & Parkavi, A. (2020). Quality grading of the fruits and vegetables using image processing techniques and machine learning: A review. In Advances in Communication Systems and Networks (pp. 477–486). https://doi.org/10.1007/978-981-15-3992-3_40

  • Shahin, M. A., Symons, S. J., & Hatcher, D. W. (2014). Quantification of mildew damage in soft red winter wheat based on spectral characteristics of bulk samples: A comparison of visible-near-infrared imaging and near-infrared spectroscopy. Food&bioprocess Technology, 7(1), 224–234.

    Article  CAS  Google Scholar 

  • Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298. https://doi.org/10.1109/TMI.2016.2528162

    Article  PubMed  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Computer Science.

  • Sistrunk, W. A., & Morris, J. R. (1985). Strawberry quality: Influence of cultural and environmental Factors. Springer.

    Google Scholar 

  • Sugino, N., Watanabe, T., Nakamura, N., & Kitazawa, H. (2021). Electrical and mechanical analysis to evaluate the cultivar difference in strawberries with respect to their bruising sensitivities and mass loss acceleration. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2021.111489

    Article  Google Scholar 

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., & Rabinovich, A. (2014). Going deeper with convolutions. IEEE Computer Society.

  • Vadivambal, R., & Jayas, D. S. (2010). Applications of thermal imaging in agriculture and food industry—A review. Food and Bioprocess Technology, 4(2), 186–199. https://doi.org/10.1007/s11947-010-0333-5

    Article  Google Scholar 

  • Varith, J., Hyde, G. M., Baritelle, A. L., Fellman, J. K., & Sattabongkot, T. (2003). Non-contact bruise detection in apples by thermal imaging. Innovative Food Science & Emerging Technologies, 4(2), 211–218. https://doi.org/10.1016/s1466-8564(03)00021-3

    Article  Google Scholar 

  • Vasconez, J. P., Delpiano, J., Vougioukas, S., & Auat Cheein, F. (2020). Comparison of convolutional neural networks in fruit detection and counting: A comprehensive evaluation. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2020.105348

    Article  Google Scholar 

  • Wills, R., & Kim, G. H. (1995). Effect of ethylene on postharvest life of strawberries. Postharvest Biology and Technology, 6(s 3–4), 249–255.

    Article  CAS  Google Scholar 

  • Xie, W., Wei, S., Zheng, Z., Jiang, Y., & Yang, D. (2021). Recognition of defective carrots based on deep learning and transfer learning. Food and Bioprocess Technology, 1–14.

  • Zeng, X., Miao, Y., Ubaid, S., Gao, X., & Zhuang, S. (2020). Detection and classification of bruises of pears based on thermal images. Postharvest Biology and Technology. https://doi.org/10.1016/j.postharvbio.2019.111090

    Article  Google Scholar 

  • Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of deep learning in food: A review. Comprehensive Reviews in Food ence and Food Safety, 18(5).

  • Zhuang, F., Qi, Z., Duan, K., Xi, D., & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, PP(99), 1–34.

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (62005165) and the Key Lab of Intelligent and Green Flexographic Printing (ZBKT201810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banglian Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Li, B., Huang, Y. et al. Bruise Detection and Classification of Strawberries Based on Thermal Images. Food Bioprocess Technol 15, 1133–1141 (2022). https://doi.org/10.1007/s11947-022-02804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02804-5

Keywords

Navigation