Skip to main content

Advertisement

Log in

A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products

  • Review Article
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The present consumer market is concerned about a healthy diet and the demand for such products has been on the rise. Intense research has been conducted on gut microbiota for the maintenance of human health. Half of the population of gut microbes can be lost due to changes in diet. To maintain this gut microbial balance, the use of probiotics has received increasing attention. Several dairy-based probiotic foods have been developed up to date to meet this need. However, these products have the limitations such as lactose intolerance, a requirement of cold storage conditions, allergenicity to milk proteins, and high fat and cholesterol content. Considering these limitations, several non-dairy-based probiotic products have been developed among which probiotic bakery products are of an innovative research field. This review focuses on the probiotic products in the bakery food category, collates the scientific literature, and research conducted on probiotic bakery products. Different microencapsulation technologies such as freeze-drying, spray drying, extrusion, spray chilling, and emulsion along with their principles used for improving viability have also been discussed. Factors that affect probiotic viability including strain type, food pH, water activity of the food product, and food matrix type have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadias, M., Benabarre, A., Teixidó, N., Usall, J., & Vinas, I. (2001). Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. International Journal of Food Microbiology, 65(3), 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Adhikari, K., Mustapha, A., Grün, I. U., & Fernando, L. (2000). Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. Journal of Dairy Science, 83(9), 1946–1951.

    Article  CAS  PubMed  Google Scholar 

  • Ale, E. C., Rojas, M. F., Reinheimer, J. A., & Binetti, A. G. (2020). Lactobacillus fermentum: Could EPS production ability be responsible for functional properties?. Food microbiology, 90, 103465.

  • Altamirano-Fortoul, R., Le-Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amount of steam during baking on bread crust features and water diffusion. Journal of Food Engineering, 108(1), 128–134.

    Article  Google Scholar 

  • Altamirano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A., & Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocolloids, 29(1), 166–174.

    Article  CAS  Google Scholar 

  • Andersson, H., Asp, N. G., Bruce, Å., Roos, S., Wadström, T., & Wold, A. E. (2001). Health effects of probiotics and prebiotics A literature review on human studies. Näringsforskning, 45(1), 58–75.

    Article  Google Scholar 

  • Archacka, M., Białas, W., Dembczyński, R., Olejnik, A., Sip, A., Szymanowska, D., Celińska, E., Jankowski, T., Olejnik, A., & Rogodzińska, M. (2019). Method of preservation and type of protective agent strongly influence probiotic properties of Lactococcus lactis: A complete process of probiotic preparation manufacture and use. Food Chemistry, 274, 733–742.

    Article  CAS  PubMed  Google Scholar 

  • Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M., & Finlay, B. (2014). The intestinal microbiome in early life: Health and disease. Frontiers in Immunology, 5, 427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arepally, D., & Goswami, T. K. (2019). Effect of inlet air temperature and gum arabic concentration on encapsulation of probiotics by spray drying. Lwt, 99, 583–593.

    Article  CAS  Google Scholar 

  • Arepally, D., Reddy, R. S., & Goswami, T. K. (2020a). Encapsulation of Lactobacillus acidophilus NCDC 016 cells by spray drying: Characterization, survival after in vitro digestion, and storage stability. Food & Function, 11(10), 8694–8706.

    Article  CAS  Google Scholar 

  • Arepally, D., Reddy, R. S., Goswami, T. K., & Datta, A. K. (2020b). Biscuit baking: A review. LWT, 131, 109726.

  • Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT-Food Science and Technology, 63(1), 685–690.

  • Arslan-Tontul, S., & Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. Lwt-Food Science and Technology, 81, 160–169.

    Article  CAS  Google Scholar 

  • Arslan-Tontul, S., Erbas, M., & Gorgulu, A. (2019). The use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins, 11(3), 840–849.

    Article  CAS  PubMed  Google Scholar 

  • Aschenbrenner, M., Foerst, P., & Kulozik, U. (2015). Freeze-drying of probiotics (pp. 213–241). CRC Press.

  • Aymard, P., Saclay, Wahl, R. (2016). Biscuit filling. US patent application, 0302427 A1(19).

  • Bampi, G. B., Backes, G. T., Cansian, R. L., de Matos, F. E., Ansolin, I. M. A., Poleto, B. C., Corezzolla, L. R., & Favaro-Trindade, C. S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9(8), 1422–1428.

  • Barajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2021). Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation. Food Reviews International, 1–22.

  • Barajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2022). Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. LWT153, 112485.

  • Barbosa, J., Borges, S., Amorim, M., Pereira, M. J., Oliveira, A., Pintado, M. E., & Teixeira, P. (2015). Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods, 17, 340–351.

    Article  CAS  Google Scholar 

  • Bernussi, A. L. M., Chang, Y. K., & Martínez-Bustos, F. (1998). Effects of production by microwave heating after conventional baking on moisture gradient and product quality of biscuits (cookies). Cereal Chemistry, 75(5), 606–611.

    Article  CAS  Google Scholar 

  • Berry D. (2020, February). Good for the gut. Formulation: Probiotics. http://digitalbs.bakingbusiness.com/sosland/bs/2020_02_01/index.php#/p/85

  • Bielecka, M., & Majkowska, A. (2000). Effect of spray drying temperature of yoghurt on the survival of starter cultures, moisture content and sensoric properties of yoghurt powder. Food/nahrung, 44(4), 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Boza, Y., Barbin, D., & Scamparini, A. R. P. (2004). Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. Process Biochemistry, 39(10), 1275–1284.

    Article  CAS  Google Scholar 

  • Bredariol, P., de Carvalho, R.A., & Vanin, F. M. (2020). The effect of baking conditions on protein digestibility, mineral and oxalate content of wheat breads. Food Chemistry332, 127399.

  • Budhwar, S., Sethi, K., & Chakraborty, M. (2020). Efficacy of germination and probiotic fermentation on underutilized cereal and millet grains. Food Production, Processing and Nutrition, 2, 1–17.

    Article  Google Scholar 

  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467–483.

    Article  CAS  Google Scholar 

  • Cao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64, 103643.

  • Cappelli, A., Lupori, L., & Cini, E. (2021). Baking technology: A systematic review of machines and plants and their effect on final products, including improvement strategies. Trends in Food Science & Technology, 115, 275–284.

    Article  CAS  Google Scholar 

  • Capurso, L. (2019). Thirty years of Lactobacillus rhamnosus GG: A review. Journal of Clinical Gastroenterology, 53, S1–S41.

    Article  CAS  PubMed  Google Scholar 

  • Cargill. (2018). The shifting global dairy market. https://www.cargill.com/doc/1432126152938/dairy-white-paper-2018.pdf

  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004). Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze‐dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress20(1), 248–254.

  • Cassani, L., Gomez-Zavaglia, A., & Simal-Gandara, J. (2020). Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Research International, 129, 108852.

  • Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, C. M. C., Gibson, G. R., & Rowland, I. (2011). Health benefits of probiotics: Are mixtures more effective than single strains? European Journal of Nutrition, 50(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Wang, Q., Liu, C. M., & Gong, J. (2017). Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Critical Reviews in Food Science and Nutrition, 57(6), 1228–1238.

    Article  CAS  PubMed  Google Scholar 

  • Chou, C. C., & Hou, J. W. (2000). Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. International Journal of Food Microbiology, 56(2–3), 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran, B. M., Stanton, C., Fitzgerald, G. F., & Ross, R. (2005). Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 71(6), 3060–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona-Hernandez, R. I., Álvarez-Parrilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, L. A., & Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: A review. Comprehensive Reviews in Food Science and Food Safety, 12(6), 614–628.

    Article  CAS  PubMed  Google Scholar 

  • Côté, J., Dion, J., Burguière, P., Casavant, L., & Eijk, J. V. (2013). Probiotics in bread and baked products: A new product category. Cereal Foods World, 58(6), 293–296.

    Article  Google Scholar 

  • Cotter, P. D., & Hill, C. (2003). Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67(3), 429–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousin, F. J., Mater, D. D., Foligné, B., & Jan, G. (2011). Dairy propionibacteria as human probiotics: A review of recent evidence. Dairy Science & Technology, 91(1), 1–26.

    Google Scholar 

  • D’Argenio, V., & Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta, 451, 97–102.

    Article  CAS  Google Scholar 

  • Da Silva, T. M., Lopes, E. J., Codevilla, C. F., Cichoski, A. J., de Moraes Flores, É. M., Motta, M. H., da Silva, C. D. B., Grosso, C. R. F., & de Menezes, C. R. (2018). Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying. LWT, 90, 412–417.

    Article  CAS  Google Scholar 

  • Dafe, A., Etemadi, H., Zarredar, H., & Mahdavinia, G. R. (2017). Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules, 97, 299–307.

    Article  CAS  PubMed  Google Scholar 

  • De Lara Pedroso, D., Thomazini, M., Heinemann, R. J. B., & Favaro-Trindade, C. S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127–132.

    Article  CAS  Google Scholar 

  • De Prisco, A., & Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology, 48, 27–39.

    Article  CAS  Google Scholar 

  • De Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302.

    Article  CAS  Google Scholar 

  • Dianawati, D., & Shah, N. P. (2011). Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze drying and during storage in low water activity at room temperature. Journal of food science, 76(6), M463-M471.

  • Dimitrellou, D., Kandylis, P., & Kourkoutas, Y. (2016). Effect of cooling rate, freeze-drying, and storage on survival of free and immobilized Lactobacillus casei ATCC 393. LWT-Food Science and Technology, 69, 468–473.

    Article  CAS  Google Scholar 

  • Dimitrellou, D., Kandylis, P., Lević, S., Petrović, T., Ivanović, S., Nedović, V., & Kourkoutas, Y. (2019). Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT, 116,108501.

  • Doleyres, Y., & Lacroix, C. J. I. D. J. (2005). Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. International Dairy Journal, 15(10), 973–988.

    Article  CAS  Google Scholar 

  • Dong, Q. Y., Chen, M. Y., Xin, Y., Qin, X. Y., Cheng, Z., Shi, L. E., & Tang, Z. X. (2013). Alginate-based and protein-based materials for probiotics encapsulation: A review. International Journal of Food Science & Technology, 48(7), 1339–1351.

    Article  CAS  Google Scholar 

  • EMR. (2020). "Global Bakery Market, By Type, By Distribution Channel, By Region, Competition Forecast & Opportunities, 2026". https://www.expertmarketresearch.com/reports/bakery-products-market

  • Erkkilä, S., & Petäjä, E. (2000). Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Science, 55(3), 297–300.

    Article  PubMed  Google Scholar 

  • Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications–A review. Trends in Food Science & Technology, 31(2), 138–155.

    Article  CAS  Google Scholar 

  • Ezekiel, O. O., Okehie, I. D., & Adedeji, O. E. (2020). Viability of Lactobacillus rhamnosus GG in simulated gastrointestinal conditions and after baking white pan bread at different temperature and time regimes. Current Microbiology, 77(12), 3869–3877.

    Article  CAS  PubMed  Google Scholar 

  • Fang, Z., & Bhandari, B. (2012). Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. In Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 73–109). Woodhead Publishing.

  • FAO/WHO. (2002). Guidelines for the evaluation of probiotics in Food. FAO/WHO Joint Working Group Report.

  • Fareez, I. M., Lim, S. M., Mishra, R. K., & Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419–1428.

    Article  CAS  PubMed  Google Scholar 

  • Fares, C., Menga, V., Martina, A., Pellegrini, N., Scazzina, F., & Torriani, S. (2015). Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and Bacillus coagulans GBI-30, 6086. Journal of Cereal Science, 65, 260–266.

    Article  CAS  Google Scholar 

  • Farmer, S., Lefkowitz, A. R., Bush, M. A., & Maske, D. T. (2020). Baked Goods. US Patent, US, 2020(0000106), A1.

    Google Scholar 

  • Figueroa-Gonzalez, I., Rodriguez-Serrano, G., Gomez-Ruiz, L., Garcia-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39, 747–753.

    Article  Google Scholar 

  • Food Marketing Technology. (2021, April 3). Bakery Industry in India: The prospect, growth, and reach in the near future. https://fmtmagazine.in/bakery-industry-in-india/

  • Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2021a). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 61(9), 1515–1536.

    Article  CAS  PubMed  Google Scholar 

  • Frakolaki, G., Kekes, T., Lympaki, F., Giannou, V., & Tzia, C. (2021). Use of encapsulated Bifidobacterium animalis subsp. lactis through extrusion or emulsification for the production of probiotic yogurt. Journal of Food Process Engineering, e13792.

  • Fu, N., & Chen, X. D. (2011). Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44(5), 1127–1149.

    Article  CAS  Google Scholar 

  • Gadkari, P. V., & Balaraman, M. (2015). Catechins: Sources, extraction and encapsulation: A review. Food and Bioproducts Processing, 93, 122–138.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Glaberson H. (2011, January 11). Baker and Biotech Company launch probiotic bread product. https://www.bakeryandsnacks.com/Article/2011/01/11/Baker-and-biotech-company-launch-probiotic-bread-product

  • Goibier, L., Pillement, C., Monteil, J., Faure, C., & Leal-Calderon, F. (2020). Preparation of multiple water-in-oil-in-water emulsions without any added oil-soluble surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 590, 124492.

  • Golowczyc, M. A., Silva, J., Abraham, A. G., De Antoni, G. L., & Teixeira, P. (2010). Preservation of probiotic strains isolated from kefir by spray drying. Letters in Applied Microbiology, 50(1), 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Grenier, D., Lucas, T., & Le Ray, D. (2019). Enhanced aeration of part-baked bread using a novel combination of baking and partial vacuum. Journal of Food Engineering, 248, 62–70.

    Article  CAS  Google Scholar 

  • Guan, Q., Xiong, T., & Xie, M. (2020). Influence of probiotic fermented fruit and vegetables on human health and the related industrial development trend. Engineering.

  • Günel, Z., Varhan, E., Koç, M., Topuz, A., & Sahin-Nadeem, H. (2021). Production of pungency-suppressed capsaicin microcapsules by spray chilling. Food Bioscience, 40, 100918.

  • Gurram, S., Jha, D. K., Shah, D. S., Kshirsagar, M. M., & Amin, P. D. (2021). Insights on the critical parameters affecting the probiotic viability during stabilization process and formulation development. An Official Journal of the American Association of Pharmaceutical Scientists, 22(5), 1–22.

    Google Scholar 

  • Guynot, M. E., Ramos, A. J., Sala, D., Sanchis, V., & Marın, S. (2002). Combined effects of weak acid preservatives, pH and water activity on growth of Eurotium species on a sponge cake. International Journal of Food Microbiology, 76(1–2), 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Halim, M., Mustafa, N. A. M., Othman, M., Wasoh, H., Kapri, M. R., & Ariff, A. B. (2017). Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT-Food Science and Technology, 81, 210–216.

    Article  CAS  Google Scholar 

  • Hasgucmen, C. K., & Sengun, I. Y. (2020). Viability of probiotic strain Lactobacillus rhamnosus and its impact on sensory properties of cheesecake during storage at − 20° C and 4° C. LWT, 134, 109967.

  • Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4), 291–311.

    Article  CAS  PubMed  Google Scholar 

  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111(1), 50–55.

    Article  CAS  Google Scholar 

  • Huang, S., Rabah, H., Jardin, J., Briard-Bion, V., Parayre, S., Maillard, M. B., Le Loir, Y., Chen, X. D., Schuck, P., Jeantet, R., & Jan, G. (2016). Hyperconcentrated sweet whey, a new culture medium that enhances Propionibacterium freudenreichii stress tolerance. Applied and Environmental Microbiology, 82(15), 4641–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Vignolles, M. L., Chen, X. D., Le Loir, Y., Jan, G., Schuck, P., & Jeantet, R. (2017). Spray drying of probiotics and other food-grade bacteria: A review. Trends in Food Science & Technology, 63, 1–17.

    Article  CAS  Google Scholar 

  • Hussain, M. A., Knight, M. I., & Britz, M. L. (2009). Proteomic analysis of lactose-starved Lactobacillus casei during stationary growth phase. Journal of Applied Microbiology, 106(3), 764–773.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, R., Zahoor, T., Huma, N., Jamil, A., & Ünlü, G. (2019). In-vitro GIT tolerance of microencapsulated Bifidobacterium bifidum ATCC 35914 using polysaccharide-protein matrix. Probiotics and Antimicrobial Proteins, 11(3), 830–839.

    Article  CAS  PubMed  Google Scholar 

  • Isleroglu, H., Kemerli, T., Sakin-Yilmazer, M., Guven, G., Ozdestan, O., Uren, A., & Kaymak-Ertekin, F. (2012). Effect of steam baking on acrylamide formation and browning kinetics of cookies. Journal of Food Science, 77(10), E257–E263.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, M., Flores-Andrade, E., Pascual-Pineda, L. A., & Beristain, C. I. (2015). Effect of water activity on the stability of Lactobacillus paracasei capsules. LWT-Food Science and Technology, 60(1), 346–351.

    Article  CAS  Google Scholar 

  • Jouki, M., Khazaei, N., Rashidi-Alavijeh, S., & Ahmadi, S. (2021). Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying. Food Hydrocolloids, 120, 106895.

  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Science and Technology, 39(10), 1221–1227.

    Article  CAS  Google Scholar 

  • Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(033), 1–19.

    Article  CAS  Google Scholar 

  • Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78(1), 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Keller, D., Verbruggen, S., Cash, H., Farmer, S., & Venema, K. (2019). Spores of Bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Beneficial Microbes, 10(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939.

    Article  CAS  Google Scholar 

  • Kim, W. S., Perl, L., Park, J. H., Tandianus, J. E., & Dunn, N. W. (2001). Assessment of stress response of the probiotic Lactobacillus acidophilus. Current Microbiology, 43(5), 346–350.

    Article  CAS  PubMed  Google Scholar 

  • Kobus-Cisowska, J., Szymanowska, D., Maciejewska, P., Szczepaniak, O., Kmiecik, D., Gramza-Michałowska, A., Kulczyński, B., & Cielecka-Piontek, J. (2019). Enriching novel dark chocolate with Bacillus coagulans as a way to provide beneficial nutrients. Food & Function, 10(2), 997–1006.

    Article  CAS  Google Scholar 

  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13(1), 3–13.

    Article  CAS  Google Scholar 

  • Kumar, B. V., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products-a review. Journal of Food Science and Technology, 52(10), 6112–6124.

    Article  CAS  Google Scholar 

  • Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009). Storage stability of freeze–dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58(2), 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Lallemand. (2019, May). Baking with probiotics. Lallemand Baking Update. https://www.lallemandbaking.com/wp-content/uploads/2019/12/Baking-Update-Special-Edition-Baking-with-Probiotics.pdf

  • Lathrop, A. A., Taylor, T., & Schnepf, J. (2014). Survival of Salmonella during baking of peanut butter cookies. Journal of Food Protection, 77(4), 635–639.

    Article  PubMed  Google Scholar 

  • Leylak, C., Özdemir, K. S., Gurakan, G. C., & Ogel, Z. B. (2021). Optimisation of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum Arabic: Its application in yoghurt. International Dairy Journal112, 104865.

  • Liu, H., Cui, S. W., Chen, M., Li, Y., Liang, R., Xu, F., & Zhong, F. (2019). Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Critical Reviews in Food Science and Nutrition, 59(17), 2863–2878.

    Article  PubMed  Google Scholar 

  • Longoria-García, S., Cruz-Hernández, M. A., Flores-Verástegui, M. I. M., Contreras-Esquivel, J. C., Montañez-Sáenz, J. C., & Belmares-Cerda, R. E. (2018). Potential functional bakery products as delivery systems for prebiotics and probiotics health enhancers. Journal of Food Science and Technology, 55(3), 833–845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makinen, K., Berger, B., Bel-Rhlid, R., & Ananta, E. (2012). Science and technology for the mastership of probiotic applications in food products. Journal of Biotechnology, 162(4), 356–365.

    Article  CAS  PubMed  Google Scholar 

  • Malmo, C., La Storia, A., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food and Bioprocess Technology, 6(3), 795–805.

    Article  CAS  Google Scholar 

  • Maltesen, M. J., & Van De Weert, M. (2008). Drying methods for protein pharmaceuticals. Drug Discovery Today: Technologies, 5(2–3), e81–e88.

    Article  PubMed  Google Scholar 

  • Marcial-Coba, M. S., Cieplak, T., Cahú, T. B., Blennow, A., Knøchel, S., & Nielsen, D. S. (2018). Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage. Food & Function, 9(11), 5868–5879.

    Article  CAS  Google Scholar 

  • Marsh, A. J., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science & Technology, 38(2), 113–124.

    Article  CAS  Google Scholar 

  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15–25.

    Article  CAS  Google Scholar 

  • McGlynn, W. (2003). Importance of food pH in commercial canning operations.

  • Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C., & Ross, R. P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406–1416.

    Article  CAS  Google Scholar 

  • Mogol, B. A., & Gökmen, V. (2014). Mitigation of acrylamide and hydroxymethylfurfural in biscuits using a combined partial conventional baking and vacuum post-baking process: Preliminary study at the lab scale. Innovative Food Science & Emerging Technologies, 26, 265–270.

    Article  CAS  Google Scholar 

  • Mohammadi, R., & Mortazavian, A. M. (2011). Technological aspects of prebiotics in probiotic fermented milks. Food Reviews International, 27(2), 192–212.

    Article  Google Scholar 

  • Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology, 9, 757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muniandy, P., Shori, A. B., & Baba, A. S. (2017). Comparison of the effect of green, white and black tea on Streptococcus thermophilus and Lactobacillus spp. in yogurt during refrigerated storage. Journal of the Association of Arab Universities for Basic and Applied Sciences, 22(1), 26–30.

  • Muzzafar, A., & Sharma, V. (2018). Microencapsulation of probiotics for incorporation in cream biscuits. Journal of Food Measurement and Characterization, 12(3), 2193–2201.

    Article  Google Scholar 

  • New Orleans. (2021, June 3). A new probiotic muffin fortified with Ganeden BC30 probiotic. https://crp.com/isabellas-healthy-bakery-unveils-activate-a-new-probiotic-muffin-fortified-with-ganedenbc30-probiotic/

  • Okuro, P. K., de Matos Junior, F. E., & Favaro-Trindade, C. S. (2013). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technology and Biotechnology, 51(2), 171.

    CAS  Google Scholar 

  • Oriach, C. S., Robertson, R. C., Stanton, C., Cryan, J. F., & Dinan, T. G. (2016). Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clinical Nutrition Experimental, 6, 25–38.

    Article  Google Scholar 

  • Ozkoc, S. O., Sumnu, G., Sahin, S., & Turabi, E. (2009). Investigation of physicochemical properties of breads baked in microwave and infrared-microwave combination ovens during storage. European Food Research and Technology, 228(6), 883–893.

    Article  CAS  Google Scholar 

  • Padhmavathi, V., Shruthy, R., & Preetha, R., (2021). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology, 1–7.

  • Pan, B., & Castell-Pérez, M. E. (1997). Textural and viscoelastic changes of canned biscuit dough during microwave and conventional baking. Journal of Food Process Engineering, 20(5), 383–399.

    Article  Google Scholar 

  • Pegg, D. E. (2015). Principles of cryopreservation. In Cryopreservation and freeze-drying protocols (pp. 3–19). Springer, New York, NY.

  • Peighambardoust, S. H., Tafti, A. G., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science & Technology, 22(5), 215–224.

    Article  CAS  Google Scholar 

  • Penhasi, A., Reuveni, A., & Baluashvili, I. (2021). Microencapsulation may preserve the viability of probiotic bacteria during a baking process and digestion: A case study with Bifidobacterium animalis Subsp. lactis in bread. Current Microbiology, 78(2), 576–589.

  • Penhasi, A., Zorea, Y., & Zorea, C. (2010). Process for preparing bakeable probiotic food. US Patent, US, 2010(0303962), A1.

    Google Scholar 

  • Peredo, A. G., Beristain, C. I., Pascual, L. A., Azuara, E., & Jimenez, M. (2016). The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT, 73, 191–196.

    Article  CAS  Google Scholar 

  • Pimentel, T. C., da Costa, W. K. A., Barão, C. E., Rosset, M., & Magnani, M. (2021). Vegan probiotic products: A modern tendency or the newest challenge in functional foods. Food Research International, 140, 110033.

  • Puttarat, N., Thangrongthong, S., Kasemwong, K., Kerdsup, P., & Taweechotipatr, M. (2021). Spray-drying microencapsulation using whey protein isolate and nano-crystalline starch for enhancing the survivability and stability of Lactobacillus reuteri TF-7. Food Science and Biotechnology, 30(2), 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. (2012). Effect of whey protein–alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4(4), 891–898.

    Article  CAS  Google Scholar 

  • Rajoka, M. S. R., Shi, J., Mehwish, H. M., Zhu, J., Li, Q., Shao, D., Huang, Q., & Yang, H. (2017). Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 6(3), 121–130.

    Article  Google Scholar 

  • Ramos, P. E., Silva, P., Alario, M. M., Pastrana, L. M., Teixeira, J. A., Cerqueira, M. A., & Vicente, A. A. (2018). Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 77, 8–16.

    Article  CAS  Google Scholar 

  • Rather, S. A., Akhter, R., Masoodi, F. A., Gani, A., & Wani, S. M. (2017). Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Science and Technology, 83, 50–58.

    Article  CAS  Google Scholar 

  • Rathore, S., Desai, P. M., Liew, C. V., Chan, L. W., & Heng, P. W. S. (2013). Microencapsulation of microbial cells. Journal of Food Engineering, 116(2), 369–381.

    Article  CAS  Google Scholar 

  • Ray, B., & Bhunia, A. (2007). Fundamental food microbiology. CRC Press.

    Google Scholar 

  • Reddy, R. S., Ramachandra, C. T., Hiregoudar, S., Nidoni, U., Ram, J., & Kammar, M. (2014). Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Ruminant Research, 119(1–3), 130–137.

    Article  Google Scholar 

  • Reid, A. A., Champagne, C. P., Gardner, N., Fustier, P., & Vuillemard, J. C. (2007). Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. Journal of Food Science, 72(1), M031–M037.

    Article  PubMed  CAS  Google Scholar 

  • Rezac, S., Kok, C. R., Heermann, M., & Hutkins, R. (2018). Fermented foods as a dietary source of live organisms. Frontiers in Microbiology, 9, 1785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications–a narrative review. Food research international, 137, 109682.

  • Romyasamit, C., Saengsuwan, P., Boonserm, P., Thamjarongwong, B., & Singkhamanan, K. (2021). Optimization of cryoprotectants for freeze-dried potential probiotic Enterococcus faecalis and evaluation of its storage stability. Drying Technology, 1–10.

  • Rosolen, M. D., Bordini, F. W., de Oliveira, P. D., Conceição, F. R., Pohndorf, R. S., Fiorentini, Â. M., da Silva, W. P., & Pieniz, S. (2019). Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. Lwt, 115, 108411.

  • Ruttarattanamongkol, K., Wagner, M. E., & Rizvi, S. S. (2011). Properties of yeast free bread produced by supercritical fluid extrusion (SCFX) and vacuum baking. Innovative Food Science & Emerging Technologies, 12(4), 542–550.

    Article  CAS  Google Scholar 

  • Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23(2), 302–315.

    Article  CAS  PubMed  Google Scholar 

  • Schoug, Å., Olsson, J., Carlfors, J., Schnürer, J., & Håkansson, S. (2006). Freeze-drying of Lactobacillus coryniformis Si3 - Effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology, 53(1), 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Seth, D., Mishra, H. N., & Deka, S. C. (2017). Effect of microencapsulation using extrusion technique on viability of bacterial cells during spray drying of sweetened yoghurt. International Journal of Biological Macromolecules, 103, 802–807.

    Article  CAS  PubMed  Google Scholar 

  • Setlow, P. (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101(3), 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Seyedain-Ardabili, M., Sharifan, A., & Ghiassi Tarzi, B. (2016). The production of synbiotic bread by microencapsulation. Food Technology and Biotechnology, 54(1), 52–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8.

    Article  CAS  Google Scholar 

  • Silva, M. P., Tulini, F. L., Matos-Jr, F. E., Oliveira, M. G., Thomazini, M., & Fávaro-Trindade, C. S. (2018). Application of spray chilling and electrostatic interaction to produce lipid microparticles loaded with probiotics as an alternative to improve resistance under stress conditions. Food Hydrocolloids, 83, 109–117.

    Article  CAS  Google Scholar 

  • Şimşek, S. T. (2019). Vacuum-combined baking to enhance quality properties of gluten-free cake: Multi-response optimization study. LWT116, 108557.

  • Sindhu, S. C., & Khetarpaul, N. (2001). Probiotic fermentation of indigenous food mixture: Effect on antinutrients and digestibility of starch and protein. Journal of Food Composition and Analysis, 14(6), 601–609.

    Article  CAS  Google Scholar 

  • Singh, P., Medronho, B., Alves, L., da Silva, G. J., Miguel, M. G., & Lindman, B. (2017). Development of carboxymethyl cellulose-chitosan hybrid micro-and macroparticles for encapsulation of probiotic bacteria. Carbohydrate Polymers, 175, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. P., Daifas, D. P., El-Khoury, W., Koukoutsis, J., & El-Khoury, A. (2004). Shelf life and safety concerns of bakery products—A review. Critical Reviews in Food Science and Nutrition, 44(1), 19–55.

    Article  CAS  PubMed  Google Scholar 

  • Soccol, C. R., Prado, M. R. M., Garcia, L. M. B., Rodrigues, C., Medeiros, A. B. P., & Soccol, V. T. (2014). Current developments in probiotics. J. Microb. Biochem. Technol, 7, 11–20.

    Google Scholar 

  • Sosa, N., Gerbino, E., Golowczyc, M. A., Schebor, C., Gómez-Zavaglia, A., & Tymczyszyn, E. E. (2016). Effect of galacto-oligosaccharides: Maltodextrin matrices on the recovery of Lactobacillus plantarum after spray-drying. Frontiers in Microbiology, 7, 584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soukoulis, C., Yonekura, L., Gan, H. H., Behboudi-Jobbehdar, S., Parmenter, C., & Fisk, I. (2014). Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocolloids, 39, 231–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridharan, S., & Das, K. M. S. (2019). A study on suitable non dairy food matrix for probiotic bacteria–a systematic review. Current Research in Nutrition and Food Science Journal, 7(1), 05–16.

    Article  Google Scholar 

  • Sunny-Roberts, E. O., & Knorr, D. (2009). The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. International Dairy Journal, 19(4), 209–214.

    Article  CAS  Google Scholar 

  • Su, Y., Zheng, X., Zhao, Q., Fu, N., Xiong, H., Wu, W. D., & Chen, X. D. (2019). Spray drying of Lactobacillus rhamnosus GG with calcium-containing protectant for enhanced viability. Powder Technology, 358, 87–94.

    Article  CAS  Google Scholar 

  • Sumnu, G., Sahin, S., & Sevimli, M. (2005). Microwave, infrared and infrared-microwave combination baking of cakes. Journal of Food Engineering, 71(2), 150–155.

    Article  Google Scholar 

  • Sun, H., Zhang, M., Liu, Y., Wang, Y., Chen, Y., Guan, W., Li, X., Wang, Y. (2021). Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying. Carbohydrate Polymers, 260, 117843.

  • Suva, M. A., Sureja, V. P., & Kheni, D. B. (2016). Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. Journal of Current Research in Scientific Medicine, 2(2), 65.

    Article  Google Scholar 

  • Tanaka, M., & Nakayama, J. (2017). Development of the gut microbiota in infancy and its impact on health in later life. Allergology International, 66(4), 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H. W., Abbasiliasi, S., Murugan, P., Tam, Y. J., Ng, H. S., & Tan, J. S. (2020). Influence of freeze-drying and spray-drying preservation methods on survivability rate of different types of protectants encapsulated Lactobacillus acidophilus FTDC 3081. Bioscience, Biotechnology, and Biochemistry, 84(9), 1913–1920.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.

    Article  CAS  Google Scholar 

  • Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319–321.

    Article  PubMed  Google Scholar 

  • Vũ, P. D. H., Rodklongtan, A., & Chitprasert, P. (2021). Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. LWT, 148, 111725.

  • Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71–82.

    Article  Google Scholar 

  • Wang, J., McDowell, D. J., Hahm, T. S., & Lo, Y. M. (2008). Effects of expanded polytetrafluoroethylene as a packaging material on the appearance and texture of microwave-baked soy cookies. International Journal of Food Properties, 11(2), 427–438.

    Article  CAS  Google Scholar 

  • Wang, L., Yu, X., Xu, H., Aguilar, Z. P., & Wei, H. (2016). Effect of skim milk coated inulin-alginate encapsulation beads on viability and gene expression of Lactobacillus plantarum during freeze-drying. LWT-Food Science and Technology, 68, 8–13.

    Article  CAS  Google Scholar 

  • Weinbreck, F., Bodnár, I., & Marco, M. L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? International Journal of Food Microbiology, 136(3), 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q., & Shah, N. P. (2017). High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Critical Reviews in Food Science and Nutrition, 57(17), 3661–3672.

    Article  CAS  PubMed  Google Scholar 

  • Würth, R., Hörmannsperger, G., Wilke, J., Foerst, P., Haller, D., & Kulozik, U. (2015). Protective effect of milk protein based microencapsulation on bacterial survival in simulated gastric juice versus the murine gastrointestinal system. Journal of Functional Foods, 15, 116–125.

    Article  CAS  Google Scholar 

  • Xu, M., Gagné-Bourque, F., Dumont, M. J., & Jabaji, S. (2016). Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. Journal of Food Engineering, 168, 52–59.

    Article  CAS  Google Scholar 

  • Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874.

    Article  PubMed  Google Scholar 

  • Yasmin, I., Saeed, M., Pasha, I., & Zia, M. A. (2019). Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions. Probiotics and antimicrobial proteins, 11(2), 413–426.

  • Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering, 283, 110033.

  • Yolacaner, E. T., Sumnu, G., & Sahin, S. (2017). Microwave-assisted baking. In The Microwave Processing of Foods (pp. 117–141). Woodhead Publishing.

  • Zanjani, M. A. K., Tarzi, B. G., Sharifan, A., Mohammadi, N., Bakhoda, H., & Madanipour, M. M. (2012). Microencapsulation of Lactobacillus casei with calcium alginate-resistant starch and evaluation of survival and sensory properties in cream-filled cake. African Journal of Microbiology Research, 6(26), 5511–5517.

    CAS  Google Scholar 

  • Stevens Z. (2020, July 16). Cambridge Commodities unveils heat-stable probiotic for bakery. Nutrition insight. https://www.nutritioninsight.com/news/cambridge-commodities-unveils-heat-stable-probiotic-for-bakery.html

  • Zhang, L., Chen, X. D., Boom, R. M., & Schutyser, M. A. (2018). Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking. LWT, 93, 396–404.

    Article  CAS  Google Scholar 

  • Zhang, L., Huang, S., Ananingsih, V. K., Zhou, W., & Chen, X. D. (2014). A study on Bifidobacterium lactis Bb12 viability in bread during baking. Journal of Food Engineering, 122, 33–37.

    Article  Google Scholar 

  • Zhang, L., Taal, M. A., Boom, R. M., Chen, X. D., & Schutyser, M. A. (2018). Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread. LWT, 87, 318–325.

    Article  CAS  Google Scholar 

  • Zhu, Z., Luan, C., Zhang, H., Zhang, L., & Hao, Y. (2016). Effects of spray drying on Lactobacillus plantarum BM-1 viability, resistance to simulated gastrointestinal digestion, and storage stability. Drying Technology, 34(2), 177–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Ministry of Human Resource Development for the scholarship provided during her period of the Ph.D. program at IIT Kharagpur. She also likes to thank the Dual Doctoral Degree program (DDDP) between the Indian Institute of Technology Kharagpur, India and Curtin University, Australia. 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Divyasree Arepally, Ravula Sudharshan Reddy, Tridib Kumar Goswami or Ranil Coorey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arepally, D., Reddy, R.S., Goswami, T.K. et al. A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products. Food Bioprocess Technol 15, 1677–1699 (2022). https://doi.org/10.1007/s11947-022-02796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02796-2

Keywords

Navigation