Skip to main content
Log in

Applications of Ultraviolet Light–Emitting Diode Technology in Horticultural Produce: a Systematic Review and Meta-analysis

Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Essential factor influencing the growth of plants is quality and type of light, development, and accumulation of phytochemicals, especially those grown in controlled conditions. Light is essential source for photosynthesis in higher plants, whereas light signalling is important in plant morphogenesis. The development of LED technologies enables for the optimization of photosynthetic processes and the regulation of plant physiology through the manipulation of light parameters. The plant morphology and functioning are influenced by the LED light quality, duration, and intensity producing responses at biochemical, physiological, and anatomical levels. LEDs also improve the nutritional profile of fruits and vegetables by inducing resistance to abiotic and biotic stress, as well as their effect on bioactive compounds, physiological properties, and ripening process. This paper reviews the role of LEDs in pre-harvest and post-harvest storage of fresh produce, including the effects on physiological characteristics, secondary metabolites, nutritional properties, ripening process, resistance to biotic and abiotic stress, and post-harvest disease occurrence. This review also focuses on the role of LEDs and the impact of their various bandwidths on the preservation of horticultural produce pre- and post-harvest. LED treatment can enhance several phytochemicals such as phenolic compounds, carotenoids, and vitamins. It has a significant impact on antioxidant capacity and anthocyanin content. LED was seen to be an efficient lighting source for delaying or accelerating ripening of fruits, and as well as delaying senescence. Therefore, LED lighting is an promising technology for enhancing the shelf life of vegetables by increasing disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and Biochemistry, 72, 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, S. Y., Kim, S. A., Choi, S. J., & Yun, H. K. (2015a). Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Horticulture, Environment, and Biotechnology, 56(1), 36–43.

    Article  CAS  Google Scholar 

  • Ahn, S. Y., Kim, S. A., & Yun, H. K. (2015b). Inhibition of Botrytis cinerea and accumulation of stilbene compounds by light-emitting diodes of grapevine leaves and differential expression of defense-related genes. European Journal of Plant Pathology, 143(4), 753–765.

    Article  CAS  Google Scholar 

  • Ali, M. B., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2006). Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Reports, 25(6), 613–620.

    Article  CAS  PubMed  Google Scholar 

  • Aponiene, K., Paskeviciute, E., Reklaitis, I., & Luksiene, Z. (2015). Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments. Journal of Food Engineering, 144, 29–35.

    Article  CAS  Google Scholar 

  • Ballester, A. R., & Lafuente, M. T. (2017). LED Blue Light-induced changes in phenolics and ethylene in citrus fruit: Implication in elicited resistance against Penicillium digitatum infection. Food Chemistry, 218, 575–583.

    Article  CAS  PubMed  Google Scholar 

  • Bantis, F., Karamanoli, K., Ainalidou, A., Radoglou, K., & Constantinidou, H. I. A. (2018). Light emitting diodes (LEDs) affect morphological, physiological and phytochemical characteristics of pomegranate seedlings. Scientia Horticulturae, 234, 267–274.

    Article  CAS  Google Scholar 

  • Bian, Z. H., Yang, Q. C., & Liu, W. K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture, 95(5), 869–877.

    Article  CAS  PubMed  Google Scholar 

  • Britz, S., Caldwell, C., Mirecki, R., Slusser, J., & Gao, W. (2005, September). Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars. In Ultraviolet ground-and space-based measurements, models, and effects V (Vol. 5886, p. 58860W). International Society for Optics and Photonics.

  • Bugbee, B. (2016, May). Toward an optimal spectral quality for plant growth and development: the importance of radiation capture. In VIII International Symposium on Light in Horticulture 1134 (pp. 1–12).

  • Cammarisano, L., Donnison, I. S., & Robson, P. R. (2021). The effect of red & blue rich LEDs vs fluorescent light on lollo rosso lettuce morphology and physiology. Frontiers in Plant Science, 12, 215.

    Article  Google Scholar 

  • Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. (2014). Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society b: Biological Sciences, 369(1640), 20130243.

    Article  Google Scholar 

  • Dhakal, R., & Baek, K. H. (2014). Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes. Postharvest Biology and Technology, 90, 73–77.

    Article  CAS  Google Scholar 

  • D’Souza, C., Yuk, H. G., Khoo, G. H., & Zhou, W. (2015). Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, 14(6), 719–740.

    Article  CAS  Google Scholar 

  • Dou, H., Niu, G., Gu, M., & Masabni, J. G. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 3(2), 36.

    Article  Google Scholar 

  • Fina, J., Casadevall, R., AbdElgawad, H., Prinsen, E., Markakis, M. N., Beemster, G. T., & Casati, P. (2017). UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiology, 174(2), 1110–1126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Folta, K. M., & Maruhnich, S. A. (2007). Green light: A signal to slow down or stop. Journal of Experimental Botany, 58(12), 3099–3111.

    Article  CAS  PubMed  Google Scholar 

  • Ghate, V., Kumar, A., Zhou, W., & Yuk, H. G. (2015). Effect of organic acids on the photodynamic inactivation of selected foodborne pathogens using 461 nm LEDs. Food Control, 57, 333–340.

    Article  CAS  Google Scholar 

  • Gomez, C., Morrow, R. C., Bourget, C. M., Massa, G. D., & Mitchell, C. A. (2013). Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. HortTechnology, 23(1), 93–98.

    Article  Google Scholar 

  • Gupta, S. D., & Agarwal, A. (2017). Light emitting diodes for agriculture. In LED Supplementary Lighting (pp. 27–36).

  • Haliapas, S., Yupsanis, T. A., Syros, T. D., Kofidis, G., & Economou, A. S. (2008). Petunia× hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiologiae Plantarum, 30(6), 807.

    Article  CAS  Google Scholar 

  • Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of nutritional biochemistry, 13(10), 572–584.

    Article  CAS  PubMed  Google Scholar 

  • Hectors, K., van Oevelen, S., Guisez, Y., Prinsen, E., & Jansen, M. A. (2012). The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV–induced morphogenesis. Physiologia Plantarum, 145(4), 594–603.

    Article  CAS  PubMed  Google Scholar 

  • Heo, J. W., Kang, D. H., Bang, H. S., Hong, S. G., Chun, C. H., & Kang, K. K. (2012). Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Horticultural Science & Technology, 30(1), 6–12.

    Article  CAS  Google Scholar 

  • Huang, J. Y., Xu, F., & Zhou, W. (2018). Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit. Journal of the Science of Food and Agriculture, 98(14), 5486–5493.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, M., Watanabe, H., Amaki, W., & Yamazaki, N. (2009, November). Effects of light quality on the growth and essential oil content in sweet basil. In VI International Symposium on Light in Horticulture 907 (pp. 91–94).

  • Ilić, Z. S., & Fallik, E. (2017). Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environmental and Experimental Botany, 139, 79–90.

    Article  Google Scholar 

  • Jansen, M. A., & Van Den Noort, R. E. (2000). Ultraviolet-B radiation induces complex alterations in stomatal behaviour. Physiologia Plantarum, 110(2), 189–194.

    Article  CAS  Google Scholar 

  • Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M., & Adrian, M. (2002). Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry, 50(10), 2731–2741.

    Article  CAS  PubMed  Google Scholar 

  • Josewin, S. W., Ghate, V., Kim, M. J., & Yuk, H. G. (2018). Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against Listeria monocytogenes on smoked salmon. Food Control, 84, 354–361.

    Article  CAS  Google Scholar 

  • Kader, A. A., & Rolle, R. S. (2004). The role of post-harvest management in assuring the quality and safety of horticultural produce (Vol. 152). Food & Agriculture Org.

  • Kang, C. H., Yoon, E. K., Muthusamy, M., Kim, J. A., Jeong, M. J., & Lee, S. I. (2020). Blue LED light irradiation enhances L-ascorbic acid content while reducing reactive oxygen species accumulation in Chinese cabbage seedlings. Scientia Horticulturae, 261, 108924.

    Article  CAS  Google Scholar 

  • Kim, H. J., Lin, M. Y., & Mitchell, C. A. (2019). Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany, 157, 228–240.

    Article  Google Scholar 

  • Kim, M. J., Tang, C. H., Bang, W. S., & Yuk, H. G. (2017). Antibacterial effect of 405±5 nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. International Journal of Food Microbiology, 244, 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. S., Lee, H. O., Kim, J. Y., Kwon, K. H., Cha, H. S., & Kim, J. H. (2011). An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry. Horticulture, Environment, and Biotechnology, 52(1), 35–39.

    Article  CAS  Google Scholar 

  • Kim, K., Kook, H., Jang, Y., Lee, W., Kamala-Kannan, S., Chae, J. & Lee, K. (2013). The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. Journal of Plant Pathology and Microbiology4(9).

  • Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867.

    Article  CAS  PubMed  Google Scholar 

  • Kozai, T. (2016). Why LED lighting for urban agriculture? In LED lighting for urban agriculture (pp. 3–18).

  • Kozai, T., Niu, G., & Takagaki, M. (Eds.). (2019). Plant factory: an indoor vertical farming system for efficient quality food production. Academic press.

  • Kreuger, M., Meeuws, L., & Meeuws, G. (2018). Total indoor farming concepts for large-scale production. In Smart Plant Factory (pp. 125–135). Springer, Singapore.

  • Kudo, R., Ishida, Y., & Yamamoto, K. (2009, November). Effects of green light irradiation on induction of disease resistance in plants. In VI International Symposium on Light in Horticulture 907 (pp. 251–254).

  • Lee, M. K., Arasu, M. V., Park, S., Byeon, D. H., Chung, S. O., & Park, S. U. (2016). LED lights enhance metabolites and antioxidants in chinese cabbage and kale. Brazilian Archives of Biology and Technology59.

  • Li, H., Tang, C., Xu, Z., Liu, X., & Han, X. (2012). Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science, 4(4), 262.

    Article  Google Scholar 

  • Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29(3), 315–330.

    Article  CAS  Google Scholar 

  • Mahajan, P. V., Caleb, O. J., Gil, M. I., Izumi, H., Colelli, G., Watkins, C. B., & Zude, M. (2017). Quality and safety of fresh horticultural commodities: Recent advances and future perspectives. Food Packaging and Shelf Life, 14, 2–11.

    Article  Google Scholar 

  • Marcos, L., & Mai, K. V. (2020, September). Light spectra optimization in indoor plant growth for Internet of Things. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–6). IEEE.

  • Meng, X., Xing, T., & Wang, X. (2004). The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida. Plant Growth Regulation, 44(3), 243–250.

    Article  CAS  Google Scholar 

  • Metallo, R. M., Kopsell, D. A., Sams, C. E., & Bumgarner, N. R. (2018). Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Scientia Horticulturae, 235, 189–197.

    Article  CAS  Google Scholar 

  • Mills, T., & Dunn, B. (2016). LED grow lights for plant production. Oklahoma Cooperative Extension Service.

  • Mitchell, C. A., Both, A. J., Bourget, C. M., Burr, J. F., Kubota, C., Lopez, R. G., & Runkle, E. S. (2012). LEDs: The future of greenhouse lighting! Chronica Horticulturae, 52(1), 6–12.

    Google Scholar 

  • Murashita, S., Kawamura, S., & Koseki, S. (2017). Inactivation of nonpathogenic Escherichia coli, Escherichia coli O157: H7, Salmonella enterica typhimurium, and Listeria monocytogenes in ice using a UVC light-emitting diode. Journal of Food Protection, 80(7), 1198–1203.

    Article  PubMed  Google Scholar 

  • Murdoch, L. E., McKenzie, K., Maclean, M., Macgregor, S. J., & Anderson, J. G. (2013). Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology, 117(7–8), 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Nadalini, S., Zucchi, P., & Andreotti, C. (2017). Effects of blue and red LED lights on soilless cultivated strawberry growth performances and fruit quality. European Journal of Horticultural Science, 82(1), 12–20.

    Article  Google Scholar 

  • Nicole, C. C. S., Mooren, J., Pereira Terra, A. T., Larsen, D. H., Woltering, E. J., Marcelis, L. F. M. & Troost, F. (2017, October). Effects of LED lighting recipes on postharvest quality of leafy vegetables grown in a vertical farm. In VI International Conference Postharvest Unlimited 1256 (pp. 481–488).

  • Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., & Kurata, K. (2007). Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology, 45(3), 189–198.

    Article  CAS  Google Scholar 

  • Paucek, I., Pennisi, G., Pistillo, A., Appolloni, E., Crepaldi, A., Calegari, B., & Gianquinto, G. (2020). Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean. Agronomy, 10(7), 1002.

    Article  CAS  Google Scholar 

  • Pirrello, J., Regad, F., Latche, A., Pech, J. C., & Bouzayen, M. (2009). Regulation of tomato fruit ripening. CAB Reviews, 4(51), 1–14.

    Article  Google Scholar 

  • Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., De Pascale, S., & Colla, G. (2018). Improving vegetable quality in controlled environments. Scientia Horticulturae, 234, 275–289.

    Article  Google Scholar 

  • Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Duchovskis, P., Novičkovas, A. & Zukauskas, A. (2010, August). Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 939 (pp. 85–91).

  • Shen, Y. Z., Guo, S. S., Ai, W. D., & Tang, Y. K. (2014). Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment. Life Sciences in Space Research, 2, 38–42.

    Article  Google Scholar 

  • Solymosi, K., & Keresztes, Á. (2012). Plastid structure, diversification and interconversions II. Land plants. Current Chemical Biology, 6(3), 187–204.

    Article  Google Scholar 

  • Solymosi, K., & Schoefs, B. (2010). Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynthesis Research, 105(2), 143–166.

    Article  CAS  PubMed  Google Scholar 

  • Son, K. H., & Oh, M. M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience, 48(8), 988–995.

    Article  Google Scholar 

  • Soro, A. B., Whyte, P., Bolton, D. J., & Tiwari, B. K. (2021). Modelling the effect of UV light at different wavelengths and treatment combinations on the inactivation of Campylobacter jejuni. Innovative Food Science & Emerging Technologies, 69, 102626.

    Article  CAS  Google Scholar 

  • Sommers, C., Gunther, N. W., IV., & Sheen, S. (2017). Inactivation of Salmonella spp., pathogenic Escherichia coli, Staphylococcus spp., or Listeria monocytogenes in chicken purge or skin using a 405-nm LED array. Food Microbiology, 64, 135–138.

    Article  PubMed  Google Scholar 

  • Stange, C., & Flores, C. (2012). Carotenoids and photosynthesis-regulation of carotenoid biosyntesis by photoreceptors. Advances in photosynthesis: Fundamental aspects. Rijekia, Croatia: InTech, 77–96.

  • Suthaparan, A., Torre, S., Stensvand, A., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010). Specific light-emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Disease, 94(9), 1105–1110.

    Article  CAS  PubMed  Google Scholar 

  • Tossi, V., Amenta, M., Lamattina, L., & Cassia, R. (2011). Retracted: Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant, Cell & Environment, 34(6), 909–921.

    Article  CAS  Google Scholar 

  • Tsormpatsidis, E., Henbest, R. G. C., Davis, F. J., Battey, N. H., Hadley, P., & Wagstaffe, A. (2008). UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’grown under polyethylene films. Environmental and Experimental Botany, 63(1–3), 232–239.

    Article  CAS  Google Scholar 

  • Vauzour, D., & Vafeiadou, K. (2012). and Jeremy PE Spencer. Phytonutrients, 11.

  • Wang, S. (2010). Infrared spectroscopy for food quality analysis and control.

  • Wang, S. Y., Chen, C. T., & Wang, C. Y. (2009). The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chemistry, 112(3), 676–684.

    Article  CAS  Google Scholar 

  • Wargent, J. J., Elfadly, E. M., Moore, J. P., & Paul, N. D. (2011). Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell & Environment, 34(8), 1401–1413.

    Article  CAS  Google Scholar 

  • Wargent, J. J., Nelson, B. C. W., McGhie, T. K., & Barnes, P. W. (2015). Acclimation to UV-B radiation and visible light in L actuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses. Plant, Cell & Environment, 38(5), 929–940.

    Article  CAS  Google Scholar 

  • Xu, F., Cao, S., Shi, L., Chen, W., Su, X., & Yang, Z. (2014). Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural and Food Chemistry, 62(20), 4778–4783.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Yuan, S., Zhang, D. W., Lv, X., & Lin, H. H. (2012). The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. Journal of Experimental Botany, 63(15), 5705–5716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zareie, M., Poorali, B., Nowicki, E., & Pahlevani, M. (2020, March). An improved digital control system for LED grow lights used in indoor farming. In 2020 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 2032–2035). IEEE.

  • Zhen, S., & Bugbee, B. (2020). Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant, Cell & Environment, 43(5), 1259–1272.

    Article  CAS  Google Scholar 

  • Zobayed, S. M., Afreen, F., & Kozai, T. (2005). Necessity and production of medicinal plants under controlled environments. Environmental Control in Biology, 43(4), 243–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Hussain Dar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Dar, A.H., Shams, R. et al. Applications of Ultraviolet Light–Emitting Diode Technology in Horticultural Produce: a Systematic Review and Meta-analysis. Food Bioprocess Technol 15, 487–497 (2022). https://doi.org/10.1007/s11947-021-02742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02742-8

Keywords

Navigation