Skip to main content

Advertisement

Log in

Impact of Product Formulation on Spray-Dried Microencapsulated Zinc for Food Fortification

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Different types of zinc compounds were successfully encapsulated using the technique of spray drying. Maltodextrin, pea proteins, and titanium dioxide were the materials used as bulk materials. We investigated the effect of the total solids weight percentage and the ratios between different components (zinc to maltodextrin, zinc to protein, zinc to titanium dioxide, and protein to maltodextrin) on zinc bioavailability, assessed at various times points in an in vitro digestion. The following formulation characteristics were found to produce encapsulated zinc microcapsules with highest bioavailability (up to 85%): a zinc oxide to maltodextrin ratio of 0.3, a weight percentage of 9, and a maltodextrin to pea protein ratio of 3. Other types of zinc compounds, citrate, gluconate, sulfate, carbonate, and chloride produce an average bioavailability of 45%. A small addition of the ratio zinc and titanium dioxide of 2.2 causes a decrease in zinc bioavailability of about 25%. These spray-dried microparticles containing encapsulated iron can be used for food fortification with the purpose of treating iron deficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

All data related to this work are presented in this manuscript.

References

  • Abd Ghani, A., Adachi, S., Shiga, H., Neoh, T. L., Adachi, S., & Yoshii, H. (2017). Effect of different dextrose equivalents of maltodextrin on oxidation stability in encapsulated fish oil by spray drying. Bioscience, Biotechnology, and Biochemistry, 81(4), 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, A. (2012). Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technology, 225, 107–117.

    Article  CAS  Google Scholar 

  • Agustina, S., Aidha, N. N., & Oktarina, E. (2019). Effect of maltodextrin concentration on the characteristic of phycocyanin powder as a functional food. In AIP Conference Proceedings (Vol. 2175, No. 1, p. 020050). AIP Publishing LLC.

  • Akbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. M. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry, 129965.

  • Allen, L. H. (2006). New approaches for designing and evaluating food fortification programs. The Journal of Nutrition, 136(4), 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  • Arredondo, M., Salvat, V., Pizarro, F., & Olivares, M. (2006). Smaller iron particle size improves bioavailability of hydrogen-reduced iron–fortified bread. Nutrition Research, 26(5), 235–239.

    Article  CAS  Google Scholar 

  • Arshad, R., Gulshad, L., Haq, I. U., Farooq, M. A., Al-Farga, A., Siddique, R., Manzoor, M. F., & Karrar, E. (2021). Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Science & Nutrition, 9(6), 3354–3361.

    Article  CAS  Google Scholar 

  • Augustin, M. A., & Sanguansri, L. (2008). Encapsulation of bioactives. In Food materials science (pp. 577–601). Springer, New York, NY.

  • Azhdarzadeh, M., Shemirani, F. M., Ruzycki, C. A., Baldelli, A., Ivey, J., Barona, D., Church, T., Lewis, D., Olfert, J. S., Finlay, W. H., & Vehring, R. (2016). An atomizer to generate monodisperse droplets from high vapor pressure liquids. Atomization and Sprays, 26(2), 121–134.

    Article  Google Scholar 

  • Baldelli, A., Boraey, M. A., Nobes, D. S., & Vehring, R. (2015). Analysis of the particle formation process of structured microparticles. Molecular Pharmaceutics, 12(8), 2562–2573.

    Article  CAS  PubMed  Google Scholar 

  • Baldelli, A., Power, R. M., Miles, R. E., Reid, J. P., & Vehring, R. (2016). Effect of crystallization kinetics on the properties of spray dried microparticles. Aerosol Science and Technology, 50(7), 693–704.

    Article  CAS  Google Scholar 

  • Baldelli, A., & Rogak, S. N. (2019). Morphology and Raman spectra of aerodynamically classified soot samples. Atmospheric Measurement Techniques, 12(8), 4339–4346.

    Article  CAS  Google Scholar 

  • Baldelli, A., Trivanovic, U., Corbin, J. C., Lobo, P., Gagné, S., Miller, J. W., Kirchen, P., & Rogak, S. (2020). Typical and atypical morphology of non-volatile particles from a diesel and natural gas marine engine. Aerosol and Air Quality Research, 20(4), 730–740.

    Article  CAS  Google Scholar 

  • Baldelli, A., & Vehring, R. (2016). Control of the radial distribution of chemical components in spray-dried crystalline microparticles. Aerosol Science and Technology, 50(10), 1130–1142.

    Article  CAS  Google Scholar 

  • Baltaci, A. K., Yuce, K., & Mogulkoc, R. (2018). Zinc metabolism and metallothioneins. Biological Trace Element Research, 183(1), 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Barrie, S. A., Wright, J. V., Pizzorno, J. E., Kutter, E., & Barron, P. C. (1987). Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans. Agents and Actions, 21(1), 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Barthold, S., Hittinger, M., Primavessy, D., Zapp, A., Groß, H., & Schneider, M. (2019). Preparation of maltodextrin nanoparticles and encapsulation of bovine serum albumin–Influence of formulation parameters. European Journal of Pharmaceutics and Biopharmaceutics, 142, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Bohr, A., Kristensen, J., Dyas, M., Edirisinghe, M., & Stride, E. (2012). Release profile and characteristics of electrosprayed particles for oral delivery of a practically insoluble drug. Journal of the Royal Society Interface, 9(75), 2437–2449.

    Article  CAS  PubMed Central  Google Scholar 

  • Boraey, M. A., Hoe, S., Sharif, H., Miller, D. P., Lechuga-Ballesteros, D., & Vehring, R. (2013). Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system. Powder Technology, 236, 171–178.

    Article  CAS  Google Scholar 

  • Both, E. M., Boom, R. M., & Schutyser, M. A. I. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 363, 519–524.

    Article  CAS  Google Scholar 

  • Burgos-Díaz, C., Wandersleben, T., Marqués, A. M., & Rubilar, M. (2016). Multilayer emulsions stabilized by vegetable proteins and polysaccharides. Current Opinion in Colloid & Interface Science, 25, 51–57.

    Article  Google Scholar 

  • Can Karaca, A. (2020). Encapsulation of black pepper seed oil using maltodextrin and pea protein. Food Science and Technology International, 26(5), 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Carmona, P. A. O., Garcia, L. C., de Aquino Ribeiro, J. A., Valadares, L. F., de Figueiredo Marçal, A., de França, L. F., & Mendonça, S. (2018). Effect of solids content and spray-drying operating conditions on the carotenoids microencapsulation from pressed palm fiber oil extracted with supercritical CO 2. Food and Bioprocess Technology, 11(9), 1703–1718.

    Article  CAS  Google Scholar 

  • Chang, C., & Nickerson, M. T. (2018). Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying. Journal of Food Science and Technology, 55(8), 2850–2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuyen, H. V., Roach, P. D., Golding, J. B., Parks, S. E., & Nguyen, M. H. (2019). Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technology, 344, 373–379.

    Article  CAS  Google Scholar 

  • Coimbra, P. P. S., Cardoso, F. D. S. N., & Gonçalves, É. C. B. D. A. (2020). Spray-drying wall materials: relationship with bioactive compounds. Critical Reviews in Food Science and Nutrition, 1–18.

  • Collado, A., Hernández, G., Morejón, V., Coll, F., & Peniche, C. (2017). Encapsulation of a bioactive steroid in a polymer matrix (micro-encapsulation of DI-31 in chitosan by spray drying for various purposes). Materials and Devices.

  • Dary, O., & Hurrell, R. (2006). Guidelines on food fortification with micronutrients. World Health Organization, Food and Agricultural Organization of the United Nations: Geneva, Switzerland, 3–37.

  • Das, J. K., Khan, R. S., & Bhutta, Z. A. (2018). Zinc Fortification. In Food Fortification in a Globalized World (pp. 213–219). Academic Press.

  • de Azevedo Bittencourt, L. L., Pedrosa, C., de Sousa, V. P., Pierucci, A. P. T., & Citelli, M. (2013). Pea protein provides a promising matrix for microencapsulating iron. Plant Foods for Human Nutrition, 68(4), 333–339.

    Article  CAS  Google Scholar 

  • de Boer, F. Y., Imhof, A., & Velikov, K. P. (2019). Encapsulation of colorants by natural polymers for food applications. Coloration Technology, 135(3), 183–194.

    Article  Google Scholar 

  • De Romaña, D. L., Lönnerdal, B., & Brown, K. H. (2003). Absorption of zinc from wheat products fortified with iron and either zinc sulfate or zinc oxide. The American Journal of Clinical Nutrition, 78(2), 279–283.

    Article  Google Scholar 

  • Desai, N. M., Gilbert Stanley, J., & Murthy, P. S. (2020). Green coffee nanoparticles: Optimisation, in vitro bioactivity and bio-release property. Journal of Microencapsulation, 37(1), 52–64.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Gómez, N. M., Doménech, E., Barroso, F., Castells, S., Cortabarria, C., & Jiménez, A. (2003). The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics, 111(5), 1002–1009.

    Article  PubMed  Google Scholar 

  • Diosady, L. L., Alberti, J. O., & Mannar, M. V. (2002). Microencapsulation for iodine stability in salt fortified with ferrous fumarate and potassium iodide. Food Research International, 35(7), 635–642.

    Article  CAS  Google Scholar 

  • Djoullah, A., & Saurel, R. (2021). Controlled release of riboflavin encapsulated in pea protein microparticles prepared by emulsion-enzymatic gelation process. Journal of Food Engineering, 292, 110276.

  • Edwards, H. M., III., & Baker, D. H. (1999). Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal. Journal of Animal Science, 77(10), 2730–2735.

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628–647.

    Article  CAS  Google Scholar 

  • Ferraz-Albani, L. A., Baldelli, A., Knapp, C. J., Jäger, W., Vehring, R., Nobes, D. S., Olfert, J. S., & Kostiuk, L. W. (2017). Enhanced evaporation of microscale droplets with an infrared laser. Journal of Heat Transfer, 139(1), 011503.

  • Gallaher, D. D., Gallaher, C. M., Shulman, S., McElhome, A., Brokken, K. A., & Shurson, G. (2002). Bioavailability of different sources of protected zinc. In Trace elements in man and animals 10 (pp. 293–297). Springer, New York, NY.

  • Gharibzahedi, S. M. T., & Jafari, S. M. (2017). The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science & Technology, 62, 119–132.

    Article  CAS  Google Scholar 

  • Goncalves, A., Estevinho, B. N., & Rocha, F. (2017). Design and characterization of controlled-release vitamin A microparticles prepared by a spray-drying process. Powder Technology, 305, 411–417.

    Article  CAS  Google Scholar 

  • Hambidge, M. (2000). Human zinc deficiency. The Journal of Nutrition, 130(5), 1344S-1349S.

    Article  CAS  PubMed  Google Scholar 

  • Huntington, D. H. (2004). The influence of the spray drying process on product properties. Drying Technology, 22(6), 1261–1287.

    Article  Google Scholar 

  • Hurrell, R. F. (2002). Fortification: Overcoming technical and practical barriers. The Journal of Nutrition, 132(4), 806S-812S.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J. S., Yu, J., Kim, H. M., Oh, J. M., & Choi, S. J. (2019). Food additive titanium dioxide and its fate in commercial foods. Nanomaterials, 9(8), 1175.

    Article  CAS  PubMed Central  Google Scholar 

  • Jansen-Alves, C., Fernandes, K. F., Crizel-Cardozo, M. M., Krumreich, F. D., Borges, C. D., & Zambiazi, R. C. (2018). Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food and Bioprocess Technology, 11(7), 1422–1436.

    Article  CAS  Google Scholar 

  • Jiang, S., Yildiz, G., Ding, J., Andrade, J., Rababahb, T. M., Almajwalc, A., Abulmeatyc, M. M., & Feng, H. (2019). Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food and Bioprocess Technology, 12(6), 1031–1040.

    Article  CAS  Google Scholar 

  • Karthik, P., & Anandharamakrishnan, C. (2013). Microencapsulation of docosahexaenoic acid by spray-freeze-drying method and comparison of its stability with spray-drying and freeze-drying methods. Food and Bioprocess Technology, 6(10), 2780–2790.

    Article  CAS  Google Scholar 

  • Kondaiah, P., Aslam, M. F., Mashurabad, P. C., Sharp, P. A., & Pullakhandam, R. (2019). Zinc induces iron uptake and DMT1 expression in Caco-2 cells via a PI3K/IRP2 dependent mechanism. Biochemical Journal, 476(11), 1573–1583.

    Article  CAS  Google Scholar 

  • Konduru, N. V., Murdaugh, K. M., Sotiriou, G. A., Donaghey, T. C., Demokritou, P., Brain, J. D., & Molina, R. M. (2014). Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Particle and Fibre Toxicology, 11(1), 1–13.

    Article  Google Scholar 

  • Kurek, M. A., & Pratap-Singh, A. (2020). Plant-Based (Hemp, Pea and Rice) Protein-Maltodextrin Combinations as Wall Material for Spray-Drying Microencapsulation of Hempseed (Cannabis sativa) Oil. Foods, 9(11), 1707.

    Article  CAS  PubMed Central  Google Scholar 

  • Lan, Y., Xu, M., Ohm, J. B., Chen, B., & Rao, J. (2019). Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chemistry, 278, 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Lechanteur, A., & Evrard, B. (2020). Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics, 12(1), 55.

    Article  CAS  PubMed Central  Google Scholar 

  • Levine, K. E., Collins, B. J., Stout, M. D., Wyde, M., Afton, S. E., Essader, A. S., Ennis, T. J., Amato, K. E., McWilliams, A. C., & Fletcher, B. L. (2017). Characterization of zinc carbonate basic as a source of zinc in a rodent study investigating the effects of dietary deficiency or excess. Analytical Letters, 50(15), 2447–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Zhang, R., Ma, C., Shang, H., McClements, D. J., White, J. C., & Xing, B. (2021). Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D3 in the Simulated Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 69(9), 2855–2863.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. O., Diosady, L. L., & Wesley, A. S. (2009). Iron in vitro bioavailability and iodine storage stability in double-fortified salt. Food and Nutrition Bulletin, 30(4), 327–335.

    Article  PubMed  Google Scholar 

  • Li, Z. Z., Xu, S. A., Wen, L. X., Liu, F., Liu, A. Q., Wang, Q., Sun, H. Y., Yu, W., & Chen, J. F. (2006). Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. Journal of Controlled Release, 111(1–2), 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Liversidge, G. G., & Cundy, K. C. (1995). Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. International journal of pharmaceutics, 125(1), 91–97.

  • Malik, G. K., & Mitra, J. (2021). Zinc oxide nanoparticle synthesis, characterization, and their effect on mechanical, barrier, and optical properties of hpmc-based edible film. Food and Bioprocess Technology, 14(3), 441–456.

    Article  CAS  Google Scholar 

  • Manoharan, C., & Singh, J. (2009). Insulin loaded PLGA microspheres: Effect of zinc salts on encapsulation, release, and stability. Journal of Pharmaceutical Sciences, 98(2), 529–542.

    Article  CAS  PubMed  Google Scholar 

  • Meng, X., Zhang, M., & Adhikari, B. (2014). The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwifruit. Food and Bioprocess Technology, 7(1), 126–132.

    Article  CAS  Google Scholar 

  • Minemoto, Y., Hakamata, K., Adachi, S., & Matsuno, R. (2002). Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. Journal of Microencapsulation, 19(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Ibanez, M., Nuzzo, M., Turchiuli, C., Bergenståhl, B., Dumoulin, E., & Millqvist-Fureby, A. (2016). The microstructure and component distribution in spray-dried emulsion particles. Food Structure, 8, 16–24.

    Article  Google Scholar 

  • Murugesan, R., & Orsat, V. (2012). Spray drying for the production of nutraceutical ingredients—a review. Food and Bioprocess Technology, 5(1), 3–14.

    Article  Google Scholar 

  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815.

    Article  CAS  Google Scholar 

  • Okuyama, K., Abdullah, M., Lenggoro, I. W., & Iskandar, F. (2006). Preparation of functional nanostructured particles by spray drying. Advanced Powder Technology, 17(6), 587–611.

    Article  CAS  Google Scholar 

  • Pavlica, S., Gaunitz, F., & Gebhardt, R. (2009). Comparative in vitro toxicity of seven zinc-salts towards neuronal PC12 cells. Toxicology in Vitro, 23(4), 653–659.

    Article  CAS  PubMed  Google Scholar 

  • Pecoud, A., Donzel, P., & Schelling, J. L. (1975). Effect of foodstuffs on the absorption of zinc sulfate. Clinical Pharmacology & Therapeutics, 17(4), 469–474.

    Article  CAS  Google Scholar 

  • Polekkad, A., Franklin, M. E. E., Pushpadass, H. A., Battula, S. N., Rao, S. N., & Pal, D. T. (2021). Microencapsulation of zinc by spray-drying: Characterisation and fortification. Powder Technology, 381, 1–16.

    Article  CAS  Google Scholar 

  • Pratap-Singh, A., & Leiva, A. (2021). Double fortified (iron and zinc) spray-dried microencapsulated premix for food fortification. LWT, 151, 112189.

  • Pratap-Singh, A., Siddiqui, J., & Diosady, L. L. (2018). Characterizing the pH-dependent release kinetics of food-grade spray drying encapsulated iron microcapsules for food fortification. Food and Bioprocess Technology, 11(2), 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337.

    Article  CAS  Google Scholar 

  • Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1–2), 235–258.

    Article  CAS  Google Scholar 

  • Roccia, P., Martínez, M. L., Llabot, J. M., & Ribotta, P. D. (2014). Influence of spray-drying operating conditions on sunflower oil powder qualities. Powder Technology, 254, 307–313.

    Article  CAS  Google Scholar 

  • Rogak, S. N., Flagan, R. C., & Nguyen, H. V. (1993). The mobility and structure of aerosol agglomerates. Aerosol Science and Technology, 18(1), 25–47.

    Article  CAS  Google Scholar 

  • Sakurada, T., Hashimoto, S., Tsuchiya, Y., Tachibana, S., Suzuki, M., & Shimizu, K. (2005). Lateral resolution of EDX analysis with ultra low acceleration voltage SEM. Journal of Surface Analysis, 12(2), 118.

    CAS  Google Scholar 

  • Saunders, A. V., Craig, W. J., & Baines, S. K. (2013). Zinc and vegetarian diets. The Medical Journal of Australia, 199(4), S17–S21.

    PubMed  Google Scholar 

  • Schmalko, M. E., Acuña, M. G., & Scipioni, G. P. (2012). The use of maltodextrin matrices to control the release of minerals from fortified mate. International Journal of Food Studies, 1(1).

  • Seydel, P., Blömer, J., & Bertling, J. (2006). Modeling particle formation at spray drying using population balances. Drying Technology, 24(2), 137–146.

    Article  Google Scholar 

  • Soukoulis, C., & Bohn, T. (2018). A comprehensive overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition, 58(1), 1–36.

    Article  CAS  PubMed  Google Scholar 

  • Streim, J. E., & Oslin, D. W. (2015). Bronze Award: A Private-Public Partnership to Deliver Population-Level Integrated Care to Low-Income Seniors in Pennsylvania. SUSTAIN (SUpporting Seniors Receiving Treatment And INtervention), Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, and the Department of Aging, Commonwealth of Pennsylvania, Harrisburg. Psychiatric services (Washington, DC), 66(10), e12-e14.

  • Swain, J. H., Newman, S. M., & Hunt, J. R. (2003). Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area. The Journal of Nutrition, 133(11), 3546–3552.

    Article  CAS  PubMed  Google Scholar 

  • Tamm, F., Herbst, S., Brodkorb, A., & Drusch, S. (2016). Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids, 58, 204–214.

    Article  CAS  Google Scholar 

  • Tan, S., Zhong, C., & Langrish, T. (2020). Encapsulation of caffeine in spray-dried micro-eggs for controlled release: The effect of spray-drying (cooking) temperature. Food Hydrocolloids, 108, 105979.

  • Toledano, M., Osorio, R., Osorio, E., Cabello, I., Toledano-Osorio, M., & Aguilera, F. S. (2017). A zinc chloride-doped adhesive facilitates sealing at the dentin interface: A confocal laser microscopy study. Journal of the Mechanical Behavior of Biomedical Materials, 74, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Trivanovic, U., Corbin, J. C., Baldelli, A., Peng, W., Yang, J., Kirchen, P., Miller, J. W., Lobo, P., Gagné, S., & Rogak, S. N. (2019). Size and morphology of soot produced by a dual-fuel marine engine. Journal of Aerosol Science, 138, 105448.

  • Trivanovic, U., Sipkens, T. A., Kazemimanesh, M., Baldelli, A., Jefferson, A. M., Conrad, B. M., Johnson, M. R., Corbin, J. C., Olfert, J. S., & Rogak, S. N. (2020). Morphology and size of soot from gas flares as a function of fuel and water addition. Fuel, 279, 118478.

  • Turner, R. B., & Cetnarowski, W. E. (2000). Effect of treatment with zinc gluconate or zinc acetate on experimental and natural colds. Clinical Infectious Diseases, 31(5), 1202–1208.

    Article  CAS  PubMed  Google Scholar 

  • Vehring, R. (2008). Pharmaceutical particle engineering via spray drying. Pharmaceutical Research, 25(5), 999–1022.

    Article  CAS  PubMed  Google Scholar 

  • Wardhani, D. H., Wardana, I. N., Ulya, H. N., Cahyono, H., Kumoro, A. C., & Aryanti, N. (2020). The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing, 123, 72–79.

    Article  CAS  Google Scholar 

  • Wegmüller, R., Tay, F., Zeder, C., Brnić, M., & Hurrell, R. F. (2014). Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. The Journal of Nutrition, 144(2), 132–136.

    Article  PubMed  Google Scholar 

  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242–2250.

    Article  CAS  Google Scholar 

  • Zimmermann, M. B., & Windhab, E. J. (2010). Encapsulation of iron and other micronutrients for food fortification. In Encapsulation technologies for active food ingredients and food processing (pp. 187–209). Springer, New York, NY.

Download references

Funding

The authors received financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Program Grant# RGPIN-2018–04735 to Anubhav Pratap-Singh.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Anubhav Pratap-Singh and Simon Wells; methodology, formal analysis, and writing—original draft preparation: Alberto Baldelli and Simon Wells; funding acquisition, project administration, resources and supervision, writing—review and editing: Anubhav Pratap-Singh; investigation, validation, and visualization: Alberto Baldelli and Anubhav Pratap-Singh.

Corresponding author

Correspondence to Anubhav Pratap-Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The highest bioavailability is reached at a maltodextrin/pea protein ratio of 3.

• The most efficient encapsulation and higher bioavailability is for Zn lower than 9%.

• A low ratio of ZnO/maltodextrin of near 0.3 is recommended.

• Titanium dioxide is not recommended for a bioavailable encapsulated zinc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldelli, A., Wells, S. & Pratap-Singh, A. Impact of Product Formulation on Spray-Dried Microencapsulated Zinc for Food Fortification. Food Bioprocess Technol 14, 2286–2301 (2021). https://doi.org/10.1007/s11947-021-02721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02721-z

Keywords

Profiles

  1. Alberto Baldelli
  2. Anubhav Pratap-Singh