Skip to main content

Ultrasound-Assisted Osmotic Dehydration as a Method for Supplementing Potato with Unused Chokeberries Phenolics

Abstract

Ultrasound-assisted osmotic dehydration was evaluated as a method for supplementing potato with unused chokeberries phenolics. Sodium chloride and maltodextrin were used as osmoactive solutes, and the cubes were treated with different osmotic solution concentrations (15–30%, w/w) and sodium chloride concentrations (0–12%, w/w) under different temperatures (20–45 °C) for different times (30, 60, 120, 180, 240, and 300 min). Samples treated with ultrasonic osmotic dehydration showed about 10–37% higher water loss than those dehydrated under simple agitation, and this percentage was found highly correlated with the increase of potato cells cross-section area achieved by ultrasounds. The final total phenolic content in the osmo-treated potato cubes was between 0.08 and 1.34 mg/g, and it was very close to that of the richest fruits and vegetables. In addition, mass transfer of water, solids, and total phenolics were characterized by the diffusional approach. The shrinkage of potato tissue during the treatment was evaluated, and diffusion coefficients were assessed more accurately by the analytical solution of the Fick’s law with shrinkage considered. The present study concluded that osmotic dehydration is a feasible technology for impregnation of functional ingredients into foods.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Allali, H., Marchal, L., & Vorobiev, E. (2010). Effects of vacuum impregnation and ohmic heating with citric acid on the behaviour of osmotic dehydration and structural changes of apple fruit. Biosystem Engineering, 106, 6–13.

    Article  Google Scholar 

  2. Almohaimeed, S. A. A. (2017). Enriched potato chips with phenolic compound of red beetroot. Master Thesis.

  3. Antonio, G. C., Alves, D. G., Azoubel, P. M., Murr, F. E., & Park, K. J. (2008). Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (Ipomoea batatas Lam.). Journal of Food Engineering, 84, 375–382. https://doi.org/10.1016/j.jfoodeng.2007.05.033

    Article  Google Scholar 

  4. Azoubel, P. M., & Murr, F. E. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61, 291–295. https://doi.org/10.1016/S0260-8774(03)00132-8

    Article  Google Scholar 

  5. Balaban, M. O. (1990). Effect of volume change in foods on the temperature and moisture content predictions of simultaneous heat and moisture transfer models. Journal of Food Process Engineering, 12, 67–88. https://doi.org/10.1111/j.1745-4530.1990.tb00041.x

    Article  Google Scholar 

  6. Barat, J. M., Chiralt, A., & Fito, P. (1998). Equilibrium in cellular food osmotic solution systems as related to structure. Journal of Food Science, 63, 836–840.

    CAS  Google Scholar 

  7. Berdah, D. R., Nahas, R. I., & Barren, J. P. (2010). Synthetic and natural antioxidant additives in food stabilization: current applications and future research. In E. A. Decker, R. J. Elias, & D. J. McClements (Eds.), Oxidation in foods and beverages and antioxidant applications. Volume 1: Understanding mechanisms of oxidation and antioxidant activity. (pp. 272–320). Woodhead Publising.

  8. Bchir, B., Besbes, S., Attia, H., & Blecker, C. (2009). Osmotic dehydration of pomegranate seeds: Mass transfer kinetics and differential scanning calorimetry characterization. International Journal of Food Science & Technology, 44, 2208–2217. https://doi.org/10.1111/j.1365-2621.2009.02061.x

    CAS  Article  Google Scholar 

  9. Bellary, A. N., Sowbhagya, H. B., & Rastogi, N. K. (2011). Osmotic dehydration assisted impregnation of curcuminoids in coconut slices. Journal of Food Engineering, 105, 453–459. https://doi.org/10.1016/j.jfoodeng.2011.03.002

    CAS  Article  Google Scholar 

  10. Bermúdez-Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G. V. (2011). Ultrasound applications in food processing. In H. Feng, G. Barbosa-Canovas, & J. Weiss, Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. (pp. 65–105). New York: Springer. https://doi.org/10.1007/978-1-4419-7472-3_3

  11. Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472–479. https://doi.org/10.1016/j.jfoodeng.2005.10.018

    Article  Google Scholar 

  12. Cheng, X. F., Zhang, M., Adhikari, B., & Islam, M. N. (2014). Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: A combined NMR and DSC study. Food and Bioprocess Technology, 7, 2782–2792. https://doi.org/10.1007/s11947-014-1355-1

    CAS  Article  Google Scholar 

  13. Corrêa, J. L., Justus, A., de Oliveira, L. F., & Alves, G. E. (2015). Osmotic dehydration of tomato assisted by ultrasound: Evaluation of the liquid media on mass transfer and product quality. International Journal of Food Engineering, 11, 505–516.

    Article  Google Scholar 

  14. Denev, P., Kratchanova, M., Petrova, I., Klisurova, D., Georgiev, Y., Ognyanov, M., & Yanakieva, I. (2018). Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. Journal of Chemistry, pp. 1–11. https://doi.org/10.1155/2018/9574587

  15. Deng, Y., & Zhao, Y. (2008). Effects of pulsed-vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). Journal of Food Engineering, 85, 84–93. https://doi.org/10.1016/j.jfoodeng.2007.07.016

    Article  Google Scholar 

  16. Eren, İ., & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of food engineering, pp. 344–352. https://doi.org/10.1016/j.jfoodeng.2006.01.069

  17. Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985. https://doi.org/10.1016/j.jfoodeng.2006.06.033

    Article  Google Scholar 

  18. Farhaninejad, Z., Fathi, M., Shahedi, M., & Sadeghi, M. (2015). Osmotic dehydration of banana slices using direct and indirect sonication: Optimization and microstructure analysis. Journal of Food Process Engineering, 40, 1–10. https://doi.org/10.1111/jfpe.12336

    CAS  Article  Google Scholar 

  19. Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90, 186–190. https://doi.org/10.1016/j.jfoodeng.2008.06.021

    Article  Google Scholar 

  20. Fernandes, F. A., Linhares, F. E., Jr., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15, 1049–1054. https://doi.org/10.1016/j.ultsonch.2008.03.009

    CAS  Article  PubMed  Google Scholar 

  21. Fito, P., Chiralt, A., Barat, J. M., Andrés, A., & Martı́nez-Monzó, J., & Martı́nez-Navarrete, N. . (2001). Vacuum impregnation for development of new dehydrated products. Journal of Food Engineering, 49(4), 297–302.

    Article  Google Scholar 

  22. Ganjloo, A., Rahman, R. A., Bakar, J., Osman, A., & Bimakr, M. (2011). Mathematical modelling of mass transfer during osmotic dehydration of seedless guava (Pisidium guajava L.) cubes. International Food Research Journal, 18, 1105–1110.

    Google Scholar 

  23. Garcia-Noguera, J., Weller, C. L., Oliveira, F. I., Rodrigues, S., & Fernandes, F. A. (2010). Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innovative Food Science & Emerging Technologies, 11, 225–230. https://doi.org/10.1016/j.ifset.2009.07.001

    CAS  Article  Google Scholar 

  24. Genina-Soto, P., Barrera-Cortes, J., Gutierrez-Lopez, G., & Nieto, E. A. (2001). Temperature and concentration effects of osmotic media on OD profiles of sweet potato cubes. Drying Technology, 19, 547–558. https://doi.org/10.1081/DRT-100103933

    CAS  Article  Google Scholar 

  25. Goula, A. M., Chasekioglou, A. N., & Lazarides, H. N. (2015). Drying and shrinkage kinetics of solid waste of olive oil processing. Drying Technology, 33, 1728–1738. https://doi.org/10.1080/07373937.2015.1026983Os

    CAS  Article  Google Scholar 

  26. Goula, A. M., Kokolaki, M., & Daftsiou, E. (2017a). Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, 105, 157–170. https://doi.org/10.1016/j.fbp.2017.07.008

    CAS  Article  Google Scholar 

  27. Goula, A. M., Ververi, M., Adamopoulou, A., & Kaderides, K. (2017b). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022

    CAS  Article  PubMed  Google Scholar 

  28. Guerra-Valle, M. E., Moreno, J., Lillo-Pérez, S., Petzold, G., Simpson, R., & Nuñez, H. (2018). Enrichment of apple slices with bioactive compounds from pomegranate cryoconcentrated juice as an osmodehydration agent. Journal of Food Quality, pp. 1–9. https://doi.org/10.1155/2018/7241981

  29. Hatamipour, M. S., & Mowla, D. (2003). Experimental and theoretical investigation of drying of carrots in a fluidized bed with energy carrier. Drying Technology, 21, 83–101. https://doi.org/10.1081/DRT-120017285

    Article  Google Scholar 

  30. Islam, M. N., & Flink, J. N. (1982). Dehydration of potato: II. Osmotic concentration and its effect on air drying behaviour. International Journal of Food Science & Technology, 17, 387–403. https://doi.org/10.1111/j.1365-2621.1982.tb00194.x

    CAS  Article  Google Scholar 

  31. Kaderides, K., Mourtzinos, I., & Goula, A. M. (2020). Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chemistry, 310, 1–8. https://doi.org/10.1016/j.foodchem.2019.125849

    CAS  Article  Google Scholar 

  32. Karami, Z., Yousefi, G. H., & Emam-Djomeh, Z. (2013). Modeling and optimization of ultrasound-assisted osmotic dehydration with finished freeze drying on black cherries—the effect on antioxidant activities. Journal of Food Biosciences and Technology, 3, 11–22.

    Google Scholar 

  33. Karizaki, V. M., Sahin, S., Sumnu, G., Mosavian, M. T., & Luca, A. (2013). Effect of ultrasound-assisted osmotic dehydration as a pretreatment on deep fat frying of potatoes. Food and Bioprocess Technology, 6, 3554–3563. https://doi.org/10.1007/s11947-012-1012-5

    CAS  Article  Google Scholar 

  34. Kaymak-Ertekin, F., & Sultanoğlu, M. (2000). Modelling of mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 46, 243–250. https://doi.org/10.1016/S0260-8774(00)00084-4

    Article  Google Scholar 

  35. Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91, 495–506. https://doi.org/10.1016/j.fbp.2013.05.003

    Article  Google Scholar 

  36. Khin, M. M., Zhou, W., & Perera, C. O. (2006). A study of the mass transfer in osmotic dehydration of coated potato cubes. Journal of Food Engineering, 77, 84–95. https://doi.org/10.1016/j.jfoodeng.2005.06.050

    Article  Google Scholar 

  37. Khojasteh, A., Mirjalili, M. H., Alcalde, M. A., Cusido, R. M., Eibl, R., & Palazon, J. (2020). Powerful plant antioxidants: a new biosustainable approach to the production of rosmarinic acid. Antioxidants, 2020, 9(12), pp. 1273; https://doi.org/10.3390/antiox9121273

  38. Kim, D. O., Chun, O. K., Kim, Y. J., Moon, H. Y., & Lee, C. Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agriculture and Food Chemistry, 51, 6509–6515.

    CAS  Article  Google Scholar 

  39. Krokida, M. K., Oreopoulou, V., Maroulis, Z. B., & Marinos-Kouris, D. (2001). Effect of osmotic dedydration pretreatment on quality of french fries. Journal of Food Engineering, 49, 339–345. https://doi.org/10.1016/S0260-8774(00)00232-6

    Article  Google Scholar 

  40. Kucner, A., Klewicki, R., & Sójka, M. (2013). The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food and Bioprocess Technology, 6, 2031–2047. https://doi.org/10.1007/s11947-012-0997-0

    CAS  Article  Google Scholar 

  41. Li, H., Zhao, C., Guo, Y., An, K., Ding, S., & Wang, Z. (2012). Mass transfer evaluation of ultrasonic osmotic dehydration of cherry tomatoes in sucrose and salt solutions. International Journal of Food Science & Technology, 47, 954–960. https://doi.org/10.1111/j.1365-2621.2011.02927.x

    CAS  Article  Google Scholar 

  42. Liu, Y., Chong, C., Wu, J., Miao, S., Luo, L., & Li, X. (2013, September). Ultrasound assisted osmotic dehydration pretreatment on carrot followed by hot-air drying. Proceedings of the 2013 International Conference on Advanced Mechatronic Systems (pp. 634–637). IEEE. https://doi.org/10.1109/ICAMechS.2013.6681719

  43. Mauro, M. A., & Menegalli, F. C. (2003). Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration. Journal of Food Engineering, 57, 367–374. https://doi.org/10.1016/S0260-8774(02)00357-6

    Article  Google Scholar 

  44. Mayor, L., Moreira, R., Chenlo, F., & Sereno, A. M. (2006). Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions. Journal of Food Engineering, 74, 253–262. https://doi.org/10.1016/j.jfoodeng.2005.03.003

    CAS  Article  Google Scholar 

  45. Milczarek, R. R., Dai, A. A., Otoni, C. G., & McHugh, T. H. (2011). Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste. Journal of Food Engineering, 103, 434–441. https://doi.org/10.1016/j.jfoodeng.2010.11.013

    Article  Google Scholar 

  46. Naziri, E., Nenadis, N., Mantzouridou, FTh., & Tsimidou, M. Z. (2014). Valorization of the major agrifood industrial by-products and waste from Central Macedonia (Greece) for the recovery of compounds for food applications. Food Research International, 65, 350–358.

    Article  Google Scholar 

  47. NASS. (2013). Potatoes 2013 Summary. Retrieved from https://downloads.usda.library.cornell.edu/usda-esmis/files/fx719m44h/h128nh39g/g445cg71m/Pota-09-18-2014.pdf. Assesed September, 2014.

  48. Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M., & Witrowa-Rajchert, D. (2014). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 144, 18–25. https://doi.org/10.1016/j.foodchem.2013.05.129

    CAS  Article  PubMed  Google Scholar 

  49. Oliveira, I., Gallão, M., Rodrigues, S., & Fernandes, F. (2011). Dehydration of Malay apple (L.) using ultrasound as pretreatment. Food Bioprocess Technology, 4, 610–615. https://doi.org/10.1007/s11947-010-0351-3

    Article  Google Scholar 

  50. Osorio Gutiérrez, F. X., Peñaloza Ortiz, A., Maldonado Astudillo, Y. I., Jiménez Hernández, J., & Salazar, R. (2019). Evaluación de la deshidratación osmótica para el enriquecimiento con compuestos bioactivos en manzana. Revista mexicana de ciencias agrícolas, 10, pp. 1151–1156. https://doi.org/10.29312/remexca.v10i5.1770

  51. Rahman, M. S., Sablani, S. S., & Al-Ibrahim, M. A. (2001). Osmotic dehydration of potato: Equilibrium kinetics. Drying Technology, 19, 1163–1176. https://doi.org/10.1081/DRT-100104812

    CAS  Article  Google Scholar 

  52. Rodrigues, S., & Fernandes, F. A. (2007). Image analysis of osmotically dehydrated fruits: Melons dehydration in a ternary system. European Food Research and Technology, 225, 685–691. https://doi.org/10.1007/s00217-006-0466-y

    CAS  Article  Google Scholar 

  53. Rodrigues, S., Gomes, M. C., Gallão, M. I., & Fernandes, F. A. (2009). Effect of ultrasound-assisted osmotic dehydration on cell structure of sapotas. Journal of the Science of Food and Agriculture, 89, 665–670. https://doi.org/10.1002/jsfa.3498

    CAS  Article  Google Scholar 

  54. Rózek, A., Achaerandio, I., Almajano, M. P., Güell, C., López, F., & Ferrando, M. (2007). Solid foodstuff supplemented with phenolics from grape: Antioxidant properties and correlation with phenolic profiles. Journal of Agricultural and Food Chemistry, 55, 5147–5155. https://doi.org/10.1021/jf070427q

    CAS  Article  PubMed  Google Scholar 

  55. Rózek, A., Achaerandio, I., Güell, C., López, F., & Ferrando, M. (2009). Grape phenolic impregnation by osmotic treatment: Influence of osmotic agent on mass transfer and product characteristics. Journal of Food Engineering, 94, 59–68. https://doi.org/10.1016/j.jfoodeng.2009.02.030

    CAS  Article  Google Scholar 

  56. Rozek, A., Achaerandio, I., Guell, C., Lopez, F., & Ferrando, M. (2010). Use of commercial grape phenolic extracts to supplement solid foodstuff. LWT-Food Science and Technology, 43, 623–631. https://doi.org/10.1016/j.lwt.2009.11.002

    CAS  Article  Google Scholar 

  57. Rózek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: Phenolic stability during air drying. Journal of Food Engineering, 99, 142–150. https://doi.org/10.1016/j.jfoodeng.2010.02.011

    CAS  Article  Google Scholar 

  58. Sacchetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose–salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49, 163–173. https://doi.org/10.1016/S0260-8774(00)00206-5

    Article  Google Scholar 

  59. Santagapita, P., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., & Dalla Rosa, M. (2013). Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration. Food and Bioprocess Technology, 6, 1434–1443. https://doi.org/10.1007/s11947-012-0818-5

    Article  Google Scholar 

  60. Saurel, R., Raoult-Wack, A. L., Rios, G., & Guilbert, S. (1994). Mass transfer phenomena during osmotic dehydration of apple I. Fresh plant tissue. International Journal of Food Science & Technology, 29, 531–542. https://doi.org/10.1111/j.1365-2621.1994.tb02095.x

    CAS  Article  Google Scholar 

  61. Shamaei, S., Emam-Djomeh, Z. A., & Moini, S. (2012). Ultrasound-assisted osmotic dehydration of cranberries: Effect of finish drying methods and ultrasonic frequency on textural properties. Journal of Texture Studies, 43, 133–141. https://doi.org/10.1111/j.1745-4603.2011.00323.x

    Article  Google Scholar 

  62. Simal, S., Benedito, J., Sánchez, E. S., & Rosselló, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323–336. https://doi.org/10.1016/S0260-8774(98)00053-3

    Article  Google Scholar 

  63. Simal, S., Deya, E., Frau, M., & Rossello, C. (1997). Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apple cubes. Journal of Food Engineering, 33, 139–150. https://doi.org/10.1016/S0260-8774(97)00049-6

    Article  Google Scholar 

  64. Stojanovic, J., & Silva, J. L. (2007). Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, color and chemical properties of rabbiteye blueberries. Food Chemistry, 101, 898–906. https://doi.org/10.1016/j.foodchem.2006.02.044

    CAS  Article  Google Scholar 

  65. Taiwo, K. A., Eshtiaghi, M. N., Ade-Omowaye, B. I., & Knorr, D. (2003). Osmotic dehydration of strawberry halves: Influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. International Journal of Food Science & Technology, 38, 693–707. https://doi.org/10.1046/j.1365-2621.2003.00720.x

    CAS  Article  Google Scholar 

  66. Talla, A., Puiggali, J. R., Jomaa, W., & Jannot, Y. (2004). Shrinkage and density evolution during drying of tropical fruits: Application to banana. Journal of Food Engineering, 64, 103–109. https://doi.org/10.1016/j.jfoodeng.2003.09.017

    Article  Google Scholar 

  67. Tolić, M. T., Landeka Jurčević, I., Panjkota Krbavčić, I., Marković, K., & Vahčić, N. (2015). Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food technology and biotechnology, 53, pp. 171–179. https://doi.org/10.17113/ftb.53.02.15.3833

  68. Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6), 303–324.

    CAS  Google Scholar 

  69. Tortoe, C., Orchard, J., & Beezer, A. (2007). Osmotic dehydration kinetics of apple, banana and potato. International Journal of Food Science & Technology, 42, 312–318. https://doi.org/10.1111/j.1365-2621.2006.01225.x

    CAS  Article  Google Scholar 

  70. Tzatsi, P., & Goula, A. M. (2021). Encapsulation of extract from unused chokeberries by spray drying, co-crystallization, and ionic gelation. Waste and Biomass Valorization, pp. 1–19. https://doi.org/10.1007/s12649-020-01316-7

  71. Xin, Y., Zhang, M., & Adhikari, B. (2014). Freezing characteristics and storage stability of broccoli (Brassica oleracea L. var. botrytis L.) under osmodehydrofreezing and ultrasound-assisted osmodehydrofreezing treatments. Food and Bioprocess Technology, 7, 1736–1744. https://doi.org/10.1007/s11947-013-1231-4

    CAS  Article  Google Scholar 

  72. Zhu, J., Li, L., Chen, L., & Li, X. (2012). Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloids, 29, 116–122. https://doi.org/10.1016/j.foodhyd.2012.02.004

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Athanasia M. Goula.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pantelidou, D., Gerogiannis, K., Goula, A.M. et al. Ultrasound-Assisted Osmotic Dehydration as a Method for Supplementing Potato with Unused Chokeberries Phenolics. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02720-0

Download citation

Keywords

  • Chokeberry phenolics
  • Diffusion coefficient
  • Osmotic dehydration
  • Phenolic extract
  • Ultrasounds