Skip to main content

Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry

Abstract

Hops (Humulus lupulus L.) are known worldwide for their application in the food industry by providing both aroma and flavor to the beer. Considering its popularity as an indispensable brewing crop, a lot of information can be found in the literature about the bioactive compounds present in hop cones. However, current research pointed that hop application can go further than brewing. The present review updates the emerging technologies used to extract hop bioactive compounds in comparison with the conventional ones. The main characteristics, extraction conditions, and extracted compounds of these environmentally friendly extraction methods are highlighted, helping to understand their importance and industrial applications, especially considering hop phytochemicals and their potential for the food industry. In addition, considering this still little addressed potential, this work summarizes the use of hops in different food matrices and emphasizes the relevant aspects that circumvent it. The development of “hopped products” in addition to their potential use as food preservatives expanded the hop industrial perspectives. Among the non-beer foods, meat products, minimally processed vegetables, bread, and premium products, including non-alcoholic beverages, showed up as great options to hop compound incorporation. Consumer perception based on current trends for hopped products also indicates interesting prospects for industrial spread.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abram, V., Čeh, B., Vidmar, M., Hercezi, M., Lazić, N., Bucik, V., Možina, S. S., Košir, I. J., Kač, M., Demšar, L., & Poklar Ulrih, N. (2015). A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Industrial Crops and Products, 64, 124–134. https://doi.org/10.1016/j.indcrop.2014.11.008

    CAS  Article  Google Scholar 

  2. Al Jitan, S., Alkhoori, S. A., & Yousef, L. F. (2018). Phenolic acids from plants: Extraction and application to human health. Studies in Natural Products Chemistry, 58, 389–417. https://doi.org/10.1016/B978-0-444-64056-7.00013-1

    CAS  Article  Google Scholar 

  3. Almaguer, C., Schönberger, C., Gastl, M., Arendt, E. K., & Becker, T. (2014). Humulus lupulus – a story that begs to be told. A review. Journal of the Institute of Brewing, 120(4), 289–314. https://doi.org/10.1002/jib.160

  4. Almeida, R., Oliveira, D., Maciel, B., Machado, M. H., Bazzo, G. C., de Armas, R. D., Vitorino, V. B., Vitali, L., Block, J. M., Luiz, P., & Barreto, M. (2019). Bioactive compounds and antioxidant activities of Brazilian hop (Humulus lupulus L.) extracts. International Journal of Food Science and Technology, 1–8. https://doi.org/10.1111/ijfs.14311

  5. Alonso-Esteban, J. I., Pinela, J., Barros, L., Ćirić, A., Soković, M., Calhelha, R. C., Torija-Isasa, E., de Cortes Sánchez-Mata, M., & Ferreira, I. C. F. R. (2019). Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Industrial Crops and Products, 134(April), 154–159. https://doi.org/10.1016/j.indcrop.2019.04.001

  6. Alvarez-Rivera, G., Bueno, M., Ballesteros-Vivas, D., Mendiola, J. A., & Ibañez, E. (2020). Pressurized liquid extraction. In C. F. Poole (Ed.), Liquid-Phase Extraction (pp. 375–398). Elsevier. https://doi.org/10.1016/B978-0-12-816911-7.00013-X

  7. Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295–315. https://doi.org/10.1111/1541-4337.12253

    Article  PubMed  Google Scholar 

  8. Arita, T., Hidaka, K., & Shibuya, K. (2015). Method for producing hop extract (Patent No. US20170367392A1).

  9. Arruda, T. R., Pinheiro, P. F., Silva, P. I., & Bernardes, P. C. (2021). A new perspective of a well-recognized raw material: Phenolic content, antioxidant and antimicrobial activities and α- and β-acids profile of Brazilian hop (Humulus lupulus L.) extracts. LWT, 141(July 2020), 110905. https://doi.org/10.1016/j.lwt.2021.110905

  10. Arsene, A. L., Rodino, S., Butu, A., Petrache, P., Iordache, O., & Butu, M. (2015). Study on antimicrobial and antioxidant activity and phenolic content of ethanolic extract of Humulus lupulus. Farmácia, 63(6), 851–857.

    CAS  Google Scholar 

  11. Astray, G., Gullón, P., Gullón, B., Munekata, P. E. S., & Lorenzo, J. M. (2020a). Humulus lupulus L. As a natural source of functional biomolecules. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155074

  12. Astray, G., Gullón, P., Gullón, B., Munekata, P. E. S., & Lorenzo, J. M. (2020b). Humulus lupulus L. As a natural source of functional biomolecules. Applied Sciences (Switzerland), 10(15), 1–18. https://doi.org/10.3390/app10155074

  13. Avula, B., Ganzera, M., Warnick, J. E., Feltenstein, M. W., Sufka, K. J., & Khan, I. A. (2004). High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. Journal of Chromatographic Science, 42(7), 378–382. https://doi.org/10.1093/chromsci/42.7.378

    Article  PubMed  Google Scholar 

  14. Ayseli, M. T., & Ayseli, Y. I. (2016). Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods. Trends in Food Science and Technology, 48, 69–77. https://doi.org/10.1016/j.tifs.2015.11.005

    CAS  Article  Google Scholar 

  15. Barry, S., Muggah, E. M., McSweeney, M. B., & Walker, S. (2018). A preliminary investigation into differences in hops’ aroma attributes. International Journal of Food Science and Technology, 53(3), 804–811. https://doi.org/10.1111/ijfs.13656

    CAS  Article  Google Scholar 

  16. Bartmańska, A., Wałecka-Zacharska, E., Tronina, T., Popłoński, J., Sordon, S., Brzezowska, E., Bania, J., & Huszcza, E. (2018). Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules, 23(8), 1–12. https://doi.org/10.3390/molecules23082059

    CAS  Article  Google Scholar 

  17. Berdahl, D. R., Reynhout, G. S., & Schulze, M. H. (2009). Labiatae herb extracts and hop extracts for extending the color life and inhibiting the growth of microorganisms in fresh meat, fish and poultry (Patent No. US 7.550,162 B2). In System and method for programming a weighing scale using a key signal to enter a programming mode (US 7.550,162 B2).

  18. Bhattacharya, S., Virani, S., Zavro, M., & Haas, G. J. (2003). Inhibition of Streptococcus mutans and other oral Streptococci by hop (Humulus lupulus L.) constituents. Economic Botany, 57(1), 118–125. https://doi.org/10.1663/0013-0001(2003)057[0118:IOSMAO]2.0.CO;2

  19. Biendl, M., Engelhard, B., Forster, A., Gahr, A., Lutz, A., Mitter, W., Schmidt, R., & Schönberger, C. (2015). Hops: Their cultivation, composition and usage. Fachverlag Hans Carl.

  20. Bizaj, K., Škerget, M., Košir, I. J., & Knez, Ž. (2021). Sub- and supercritical extraction of slovenian hops (Humulus lupulus L.) aurora variety using different solvents. Plants, 10(6), 1–17. https://doi.org/10.3390/plants10061137

  21. Bocquet, L., Rivière, C., Dermont, C., Samaillie, J., Hilbert, J. L., Halama, P., Siah, A., & Sahpaz, S. (2018a). Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Industrial Crops and Products, 122(February), 290–297. https://doi.org/10.1016/j.indcrop.2018.05.061

    CAS  Article  Google Scholar 

  22. Bocquet, L., Sahpaz, S., & Rivière, C. (2018b). An overview of the antimicrobial properties of hop. In J. M. Mérillon, & C. Rivière (Eds.), Natural Antimicrobial Agents (vol. 19, pp. 31–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-67045-4_2

  23. Bocquet, L., Sahpaz, S., Bonneau, N., Beaufay, C., Mahieux, S., Samaillie, J., Roumy, V., Jacquin, J., Bordage, S., Hennebelle, T., Chai, F., Quetin-Leclercq, J., Neut, C., & Rivière, C. (2019). Phenolic compounds from Humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains. Molecules, 24(6), 1024–1050. https://doi.org/10.3390/molecules24061024

    CAS  Article  PubMed Central  Google Scholar 

  24. Bogdanova, K., Kolar, M., Langova, K., Dusek, M., Mikyska, A., Bostikova, V., Bostik, P., & Olsovska, J. (2018). Inhibitory effect of hop fractions against gram-positive multi-resistant bacteria. A Pilot Study. Biomedical Papers, 164(4), 276–283. https://doi.org/10.5507/bp.2018.026

    Article  Google Scholar 

  25. Bohr, G., Klimo, K., Zapp, J., Becker, H., & Gerhäuser, C. (2008). Cancer chemopreventive potential of humulones and isohumulones (hops α- and iso-α-acids): Induction of NAD(P)H: Quinone reductase as a novel mechanism. Natural Product Communications, 3(12), 1971–1976. https://doi.org/10.1177/1934578x0800301206

    CAS  Article  Google Scholar 

  26. Bozinou, E., Karageorgou, I., Batra, G., Dourtoglou, V. G., & Lalas, S. I. (2019). Pulsed electric field extraction and antioxidant activity determination of Moringa oleifera dry leaves: A comparative study with other extraction techniques. Beverages, 5(1), 8. https://doi.org/10.3390/beverages5010008

    CAS  Article  Google Scholar 

  27. Briggs, D. E., Boulton, C. A., Brookes, P. A., Stevens, R. (2004) The chemistry of hop constituents. In Brewing: Science and Practice. https://doi.org/10.1533/9781855739062.255

  28. Briones-Labarca, V., Giovagnoli-Vicuña, C., & Chacana-Ojeda, M. (2019). High pressure extraction increases the antioxidant potential and in vitro bio-accessibility of bioactive compounds from discarded blueberries. CYTA - Journal of Food, 17(1), 622–631. https://doi.org/10.1080/19476337.2019.1624622

    CAS  Article  Google Scholar 

  29. Buckett, L., Schinko, S., Urmann, C., Riepl, H., & Rychlik, M. (2020). Stable isotope dilution analysis of the major prenylated flavonoids found in beer, hop tea, and hops. Frontiers in Nutrition, 7(December), 1–11. https://doi.org/10.3389/fnut.2020.619921

    CAS  Article  Google Scholar 

  30. Buxiang, S., Lingzhi, T., Jiang, D., Wei, L., & Lihuang, Q. (2009). Lupulus extract containing xanthohumol and preparation method thereof (Patent No. CN101433592A).

  31. Byelashov, O. A., Adler, J. M., Geornaras, I., Ko, K. Y., Belk, K. E., Smith, G. C., & Sofos, J. N. (2010). Evaluation of brining ingredients and antimicrobials for effects on thermal destruction of Escherichia coli O157:H7 in a meat model system. Journal of Food Science, 75(4), 209–217. https://doi.org/10.1111/j.1750-3841.2010.01595.x

    CAS  Article  Google Scholar 

  32. Caballero, I., Blanco, C. A., & Porras, M. (2012). Iso-α-acids, bitterness and loss of beer quality during storage. Trends in Food Science and Technology, 26(1), 21–30. https://doi.org/10.1016/j.tifs.2012.01.001

    CAS  Article  Google Scholar 

  33. Café com Lúpulo. (2021). https://www.cafecomlupulo.com.br/

  34. Callemien, D., & Collin, S. (2010). Structure, organoleptic properties, quantification methods, and stability of phenolic compounds in beer-A review. Food Reviews International, 26(1), 1–84. https://doi.org/10.1080/87559120903157954

    CAS  Article  Google Scholar 

  35. Carbone, K., Macchioni, V., Petrella, G., & Cicero, D. O. (2020). Exploring the potential of microwaves and ultrasounds in the green extraction of bioactive compounds from Humulus lupulus for the food and pharmaceutical industry. Industrial Crops and Products, 156(April), 112888. https://doi.org/10.1016/j.indcrop.2020.112888

    CAS  Article  Google Scholar 

  36. Cattoor, K., Dresel, M., De Bock, L., Boussery, K., Van Bocxlaer, J., Remon, J. P., De Keukeleire, D., Deforce, D., Hofmann, T., & Heyerick, A. (2013). Metabolism of hop-derived bitter acids. Journal of Agricultural and Food Chemistry, 61(33), 7916–7924. https://doi.org/10.1021/jf300018s

    CAS  Article  PubMed  Google Scholar 

  37. Cattoor, K. O., Bracke, M., Deforce, D., De Keukeleire, D., & Heyerick, A. (2010). Transport of hop bitter acids across intestinal Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry, 58(7), 4132–4140. https://doi.org/10.1021/jf904079h

    CAS  Article  PubMed  Google Scholar 

  38. Cermak, P., Olsovska, J., Mikyska, A., Dusek, M., Kadleckova, Z., Vanicek, J., Nyc, O., Sigler, K., Bostikova, V., & Bostik, P. (2017). Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. Apmis, 125(11), 1033–1038. https://doi.org/10.1111/apm.12747

  39. Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., da Fonseca Machado, A. P., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, 8(September). https://doi.org/10.3389/fchem.2020.507887

  40. Chen, Q., Fu, M., Chen, M., Liu, J., Liu, X., He, G., & Pu, S. (2012). Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. Food Chemistry, 132(1), 619–623. https://doi.org/10.1016/j.foodchem.2011.10.098

  41. Cleemput, M. V., Cattoor, K., Bosscher, K. D., Haegeman, G., Keukeleire, D. D., & Heyerick, A. (2009). Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds marjan. Journal of Natural Products, 72(6), 1220–1230.

    Article  Google Scholar 

  42. Cold Brew Coffee - Corvus Coffee. (2021). https://www.corvuscoffee.com/pages/cold-brew-coffees

  43. Colgate, E. C., Miranda, C. L., Stevens, J. F., Bray, T. M., & Ho, E. (2007). Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Letters, 246(1–2), 201–209. https://doi.org/10.1016/j.canlet.2006.02.015

    CAS  Article  PubMed  Google Scholar 

  44. Corrêa, P. S., Morais Júnior, W. G., Martins, A. A., Caetano, N. S., & Mata, T. M. (2021). Microalgae biomolecules: Extraction, separation and purification methods. Processes, 9(1), 1–40. https://doi.org/10.3390/pr9010010

    CAS  Article  Google Scholar 

  45. Čulík, J., Jurková, M., Horák, T., Čejka, P., Kellner, V., Dvořák, J., Karásek, P., & Roth, M. (2009). Extraction of bitter acids from hops and hop products using Pressurized Solvent Extraction (PSE). Journal of the Institute of Brewing, 115(3), 220–225. https://doi.org/10.1002/j.2050-0416.2009.tb00372.x

    Article  Google Scholar 

  46. Cunha, S. C., & Fernandes, J. O. (2018). Extraction techniques with deep eutectic solvents. TrAC - Trends in Analytical Chemistry, 105, 225–239. https://doi.org/10.1016/j.trac.2018.05.001

    CAS  Article  Google Scholar 

  47. Kuethe, D. F., & Karman, V. D. (2004). Method for controlling microbial contamination of a vacuum-sealed food product (Patent No. US 2004/0018284 A1).

  48. de Clippeleer, J., de Rouck, G., de Cooman, L., & Aerts, G. (2010). Influence of the hopping technology on the storage-induced appearance of staling aldehydes in beer. Journal of the Institute of Brewing, 116(4), 381–398. https://doi.org/10.1002/j.2050-0416.2010.tb00789.x

    Article  Google Scholar 

  49. Demishtein, K., Reifen, R., & Shemesh, M. (2019). Antimicrobial properties of magnesium open opportunities to develop healthier food. Nutrients, 11(10), 1–8. https://doi.org/10.3390/nu11102363

    CAS  Article  Google Scholar 

  50. Dietz, C., Cook, D., Huismann, M., Wilson, C., & Ford, R. (2020). The multisensory perception of hop essential oil: A review. Journal of the Institute of Brewing, 126(4), 320–342. https://doi.org/10.1002/jib.622

    CAS  Article  Google Scholar 

  51. El Kantar, S., Rajha, H. N., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2019). Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry, 295(January 2019), 165–171. https://doi.org/10.1016/j.foodchem.2019.05.111

  52. Fedorovich, R. J., Anatol’evn, S. N., Olegovna, K. J., & Alekseevna, C. N. (2009). Method of manufacturing bakery product (Patent No. RU2357417C2).

  53. Fernandez, J. L., & Simpson, W. J. (1993). Aspects of the resistance of lactic acid bacteria to hop bitter acids. Journal of Applied Bacteriology, 75(4), 315–319. https://doi.org/10.1111/j.1365-2672.1993.tb02782.x

    CAS  Article  Google Scholar 

  54. Formato, A., Gallo, M., Ianniello, D., Montesano, D., & Naviglio, D. (2013). Supercritical fluid extraction of alfa and beta-acids from hops compared to cyclically pressurized solid – liquid extraction. The Journal of Supercritical Fluids, 84, 113–120. https://doi.org/10.1016/j.supflu.2013.09.021

    CAS  Article  Google Scholar 

  55. Fukuda, T., Obara, K., Saito, J., Umeda, S., & Ano, Y. (2020). Effects of hop bitter acids, bitter components in beer, on cognition in healthy adults: A randomized controlled trial. Journal of Agricultural and Food Chemistry, 68(1), 206–212. https://doi.org/10.1021/acs.jafc.9b06660

    CAS  Article  PubMed  Google Scholar 

  56. Gerhäuser, C. (2005). Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Molecular Nutrition and Food Research, 49(9), 827–831. https://doi.org/10.1002/mnfr.200500091

  57. Gil-ramírez, A., Antonio, J., Arranz, E., Ruíz-rodríguez, A., Reglero, G., Ibáñez, E., & Marín, F. R. (2012). Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innovative Food Science and Emerging Technologies, 16, 54–60. https://doi.org/10.1016/j.ifset.2012.04.006

    CAS  Article  Google Scholar 

  58. Grassino, A. N., Pedisić, S., Dragović-Uzelac, V., Karlović, S., Ježek, D., & Bosiljkov, T. (2020). Insight into high-hydrostatic pressure extraction of polyphenols from tomato peel waste. Plant Foods for Human Nutrition, 75(3), 427–433. https://doi.org/10.1007/s11130-020-00831-1

    CAS  Article  PubMed  Google Scholar 

  59. Grudniewska, A., & Popłoński, J. (2020). Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Separation and Purification Technology, 250, 117196. https://doi.org/10.1016/j.seppur.2020.117196

    CAS  Article  Google Scholar 

  60. H2OPS. (2021). H2OPS Sparkling Hop Water. https://h2ops.com/

  61. Haseleu, G., Intelmann, D., & Hofmann, T. (2009). Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of hop (Humulus lupulus L.) upon wort boiling. Food Chemistry, 116(1), 71–81. https://doi.org/10.1016/j.foodchem.2009.02.008

  62. Hausser, C., & Parreidt, T. S. (2015). Antimicrobial hop extracts and their application to fresh produce. In A. Mendez-Vilas (Ed.), Multidisciplinary Approaches for Studying and Combating Microbial Pathogens (pp. 49–42). BrownWalker Press: Baco Raton, FL. https://books.google.com.br/books?hl=pt-BR&lr=&id=1ueRCgAAQBAJ&oi=fnd&pg=PA49&dq=hop+ready-to-eat&ots=PdnjnPENha&sig=1iU_Pxb8VI6Nr7EXxrtcVshlm4Q#v=onepage&q=hopready-to-eat&f=false

  63. Hirondart, M., Rombaut, N., Fabiano-Tixier, A. S., Bily, A., & Chemat, F. (2020). Comparison between pressurized liquid extraction and conventional Soxhlet extraction for rosemary antioxidants, yield, composition, and environmental footprint. Foods, 9(5). https://doi.org/10.3390/foods9050584

  64. Hoplark Hop Tea. (2021). Craft Brewed Hopped Tea. https://hoptea.com/

  65. Hrncic, M. K., Spaninger, E., Kosir, I. J., Knez, Z., & Bren, U. (2019). Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients, 11(257), 1–37. https://doi.org/10.3390/nu11020257

    CAS  Article  Google Scholar 

  66. Hugo, C. J., & Hugo, A. (2015). Current trends in natural preservatives for fresh sausage products. Trends in Food Science and Technology, 45(1), 12–23. https://doi.org/10.1016/j.tifs.2015.05.003

    CAS  Article  Google Scholar 

  67. Iniguez, A. B., & Zhu, M. J. (2021). Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Critical Reviews in Food Science and Nutrition, 61(11), 1900–1913. https://doi.org/10.1080/10408398.2020.1767537

    CAS  Article  PubMed  Google Scholar 

  68. Irakli, M., Mygdalia, A., Chatzopoulou, P., & Katsantonis, D. (2019). Impact of the combination of sourdough fermentation and hop extract addition on baking properties, antioxidant capacity and phenolics bioaccessibility of rice bran-enhanced bread. Food Chemistry, 285, 231–239. https://doi.org/10.1016/j.foodchem.2019.01.145

    CAS  Article  PubMed  Google Scholar 

  69. Jelínek, L., Dolečková, M., Karabín, M., Hudcová, T., Kotlíková, B., & Dostálek, P. (2012). Influence of growing area, plant age, and virus infection on the contents of hop secondary metabolites. Czech Journal of Food Sciences, 30(6), 541–547. https://doi.org/10.17221/50/2012-cjfs

  70. Karabín, M., Jelínek, L., Kinčl, T., Hudcová, T., Kotlíková, B., & Dostálek, P. (2013). New approach to the production of xanthohumol-enriched beers. Journal of the Institute of Brewing, 119(3), 98–102. https://doi.org/10.1002/jib.71

    CAS  Article  Google Scholar 

  71. Khatib, N., Varidi, M. J., Mohebbi, M., Varidi, M., & Hosseini, S. M. H. (2020). Replacement of nitrite with lupulon–xanthohumol loaded nanoliposome in cooked beef-sausage: Experimental and model based study. Journal of Food Science and Technology, 57(7), 2629–2639. https://doi.org/10.1007/s13197-020-04299-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Kontek, B., Jedrejek, D., Oleszek, W., & Olas, B. (2021). Antiradical and antioxidant activity in vitro of hops-derived extracts rich in bitter acids and xanthohumol. Industrial Crops and Products, 161(September 2020). https://doi.org/10.1016/j.indcrop.2020.113208

  73. Kováčová, J., Lehotay, J., Úrgeová, E., Mocák, J., & Čižmárik, J. (2011). Determination of selected flavonoids in hop extract by HPLC. Journal of Liquid Chromatography and Related Technologies, 34(5), 329–340. https://doi.org/10.1080/10826076.2011.551596

    CAS  Article  Google Scholar 

  74. Kowalczyk, D., & Biendl, M. (2016). Physicochemical and antioxidant properties of biopolymer/candelilla wax emulsion films containing hop extract — A comparative study. Food Hydrocolloids, 60, 384–392. https://doi.org/10.1016/j.foodhyd.2016.04.010

    CAS  Article  Google Scholar 

  75. Kowalczyk, D., Micha, Ś, Cichocka, J., & Gawlik-dziki, U. (2013). The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets. Journal of the Institute of Brewing, 119(3), 103–110. https://doi.org/10.1002/jib.73

    CAS  Article  Google Scholar 

  76. Kramer, B., Mignard, C., Warschat, D., Gürbüz, S., Aiglstorfer, P., & Muranyi, P. (2021). Inhibition of Listeria monocytogenes on bologna by a beta acid rich hop extract. Food Control, 126(March), 108040. https://doi.org/10.1016/j.foodcont.2021.108040

    CAS  Article  Google Scholar 

  77. Kramer, B., Thielmann, J., Hickisch, A., Muranyi, P., Wunderlich, J., & Hauser, C. (2015). Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. Journal of Applied Microbiology, 118(3), 648–657. https://doi.org/10.1111/jam.12717

    CAS  Article  PubMed  Google Scholar 

  78. Krofta, K., Vrabcová, S., Mikyška, A., Jurková, M., Čajka, T., & Hajšlová, J. (2013). Stability of hop beta acids and their decomposition products during natural ageing. Acta Horticulturae, 1010(October), 221–230. https://doi.org/10.17660/ActaHortic.2013.1010.26

  79. Lafontaine, S., Varnum, S., Roland, A., Delpech, S., Dagan, L., Vollmer, D., Kishimoto, T., & Shellhammer, T. (2018). Impact of harvest maturity on the aroma characteristics and chemistry of Cascade hops used for dry-hopping. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.10.148

    Article  PubMed  Google Scholar 

  80. Lakka, A., Karageorgou, I., Kaltsa, O., Batra, G., Bozinou, E., Lalas, S., & Makris, D. (2019). Polyphenol extraction from Humulus lupulus (Hop) using a neoteric glycerol/L-alanine deep eutectic solvent: Optimisation, kinetics and the effect of ultrasound-assisted pretreatment. AgriEngineering, 1(3), 403–417. https://doi.org/10.3390/agriengineering1030030

    Article  Google Scholar 

  81. Larson, A. E., Yu, R. R. Y., Lee, O. A., Price, S., Haas, G. J., & Johnson, E. A. (1996). Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. International Journal of Food Microbiology, 33(2–3), 195–207. https://doi.org/10.1016/0168-1605(96)01155-5

    CAS  Article  PubMed  Google Scholar 

  82. Laws, D. R. J., Bath, N. A., Pickett, J. A., Ennis, C. S., & Wheldon, A. G. (1977). Preparation of hop extracts without using organic solvents. Journal of the Institute of Brewing, 83, 39–40.

    CAS  Article  Google Scholar 

  83. Legette, L., Ma, L., Reed, R. L., Miranda, C. L., Christensen, J. M., Rodriguez-Proteau, R., & Stevens, J. F. (2012). Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Molecular Nutrition and Food Research, 56(3), 466–474. https://doi.org/10.1002/mnfr.201100554

    CAS  Article  PubMed  Google Scholar 

  84. Leygonie, C., Britz, T. J., & Hoffman, L. C. (2012). Impact of freezing and thawing on the quality of meat: Review. Meat Science, 91(2), 93–98. https://doi.org/10.1016/j.meatsci.2012.01.013

    Article  PubMed  Google Scholar 

  85. Li, Y., Liu, G., Zhai, Z., Liu, L., Li, H., Yang, K., Tan, L., Wan, P., Liu, X., Ouyang, Z., Yu, Z., Tang, T., Zhu, Z., Qu, X., & Dai, K. (2014). Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrobial Agents and Chemotherapy, 58(12), 7586–7591. https://doi.org/10.1128/AAC.03936-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Liu, Y., Gu, X. H., Tang, J., & Liu, K. (2007). Antioxidant activities of hops (Humulus lupulus) and their products. Journal of the American Society of Brewing Chemists, 65(2), 116–121. https://doi.org/10.1094/ASBCJ-2007-0211-01

    CAS  Article  Google Scholar 

  87. Macchioni, V., Carbone, K., Cataldo, A., Fraschini, R., & Bellucci, S. (2020). Lactic acid-based deep eutectic solvents for the extraction of bioactive metabolites of Humulus lupulus L.: supramolecular organization, phytochemical profiling and biological activity. Separation and Purification Technology, 118039. https://doi.org/10.1016/j.seppur.2020.118039

  88. Machado, J. C., Faria, M. A., & Ferreira, I. M. P. L. V. O. (2019). Hops: New perspectives for an old beer ingredient. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816689-5.00010-9

    Book  Google Scholar 

  89. Magalhães, P. J., Carvalho, D. O., Cruz, J. M., Guido, L. F., & Barros, A. A. (2009). Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Natural Product Communications, 4(5), 591–610. https://doi.org/10.1177/1934578x0900400501

    Article  PubMed  Google Scholar 

  90. Maietti, A., Brighenti, V., Bonetti, G., Tedeschi, P., Prencipe, F. P., Benvenuti, S., Brandolini, V., & Pellati, F. (2017). Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (hop). Journal of Pharmaceutical and Biomedical Analysis, 142, 28–34. https://doi.org/10.1016/j.jpba.2017.04.043

    CAS  Article  PubMed  Google Scholar 

  91. Martínez-Ramos, T., Benedito-Fort, J., Watson, N. J., Ruiz-López, I. I., Che-Galicia, G., & Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing, 122, 41–54. https://doi.org/10.1016/j.fbp.2020.03.011

    CAS  Article  Google Scholar 

  92. Martínez, J. M., Delso, C., Álvarez, I., & Raso, J. (2020). Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Comprehensive Reviews in Food Science and Food Safety, 19(2), 530–552. https://doi.org/10.1111/1541-4337.12512

    CAS  Article  PubMed  Google Scholar 

  93. Matsui, H., Inui, T., Oka, K., & Fukui, N. (2016). The influence of pruning and harvest timing on hop aroma, cone appearance, and yield. Food Chemistry, 202, 15–22. https://doi.org/10.1016/j.foodchem.2016.01.058

    CAS  Article  PubMed  Google Scholar 

  94. Matulis, R. J., Mckeith, F. K., Sutherland, J. W., & Brewer, M. S. (1995). Sensory characteristics of frankfurters as affected by fat, salt, and pH. Journal of Food Science, 60(1), 42–47. https://doi.org/10.1111/j.1365-2621.1995.tb05603.x

    CAS  Article  Google Scholar 

  95. Memarzadeh, S. M., Gholami, A., Pirbalouti, A. G., & Masoum, S. (2020). Bakhtiari savory (Satureja bachtiarica Bunge.) essential oil and its chemical profile, antioxidant activities, and leaf micromorphology under green and conventional extraction techniques. Industrial Crops and Products, 154(June), 112719. https://doi.org/10.1016/j.indcrop.2020.112719

  96. Millis, J. R., & Schendel, M. J. (1994). Inhibition of food pathogens by hop acids (Patent No. US005286506A).

  97. Miranda, C. L., Elias, V. D., Hay, J. J., Choi, J., Reed, R. L., & Stevens, J. F. (2016). Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Archives of Biochemistry and Biophysics, 599, 22–30. https://doi.org/10.1016/j.abb.2016.03.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Mordor Intelligence. (2020). Industry report: Global Beer Market (2020 - 2025). https://www.mordorintelligence.com

  99. Moriya, H., Tanaka, S., Iida, Y., Kitagawa, S., Aizawa, S. ichi, Taga, A., Terashima, H., Yamamoto, A., & Kodama, S. (2018). Chiral separation of isoxanthohumol and 8-prenylnaringenin in beer, hop pellets and hops by HPLC with chiral columns. Biomedical Chromatography, 32(10). https://doi.org/10.1002/bmc.4289

  100. Nieto, C., Carballo, D. E., Caro, I., Quinto, E. J., Andrés, S., & Mateo, J. (2020). Immersing fresh chicken into an aqueous hop (Humulus lupulus) extract to delay spoilage during vacuum refrigerated storage. CYTA - Journal of Food, 18(1), 132–136. https://doi.org/10.1080/19476337.2020.1722245

    CAS  Article  Google Scholar 

  101. Nionelli, L., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2018). Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. International Journal of Food Microbiology, 266(May 2017), 173–182. https://doi.org/10.1016/j.ijfoodmicro.2017.12.002

  102. Ntourtoglou, G., Tsapou, E. A., Drosou, F., Bozinou, E., Lalas, S., Tataridis, P., & Dourtoglou, V. (2020). Pulsed electric field extraction of α and β-acids from pellets of Humulus lupulus (Hop). Frontiers in Bioengineering and Biotechnology, 8(April), 1–12. https://doi.org/10.3389/fbioe.2020.00297

    Article  Google Scholar 

  103. Olšovská, J., Boštíková, V., Dušek, M., Jandovská, V., Bogdanová, K., Čermák, P., Boštík, P., Mikyska, A., & Kolář, M. (2016). Humulus lupulus L. (hops) - A valuable source of compounds with bioactive effects for future therapies. Military Medical Science Letters, 85(1), 19–30. https://doi.org/10.31482/mmsl.2016.004

  104. Pang, Y., Nikolic, D., Zhu, D., Chadwick, L. R., Pauli, G. F., Farnsworth, N. R., & Van Breemen, R. B. (2007). Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Molecular Nutrition and Food Research, 51(7), 872–879. https://doi.org/10.1002/mnfr.200600252

  105. Pashazadeh, B., Elhamirad, A. H., Hajnajari, H., Sharayei, P., & Armin, M. (2020). Optimization of the pulsed electric field-assisted extraction of functional compounds from cinnamon. Biocatalysis and Agricultural Biotechnology, 23, 101461. https://doi.org/10.1016/j.bcab.2019.101461

    Article  Google Scholar 

  106. Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green extraction techniques — A comparative perspective. Current Opinion in Food Science, 34, 106192. https://doi.org/10.1016/j.cofs.2021.02.009

    Article  Google Scholar 

  107. Pipek, P., Škorpilová, T., Psotková, M., & Adamcová, M. (2017). The use of hops in meat production. Maso International: Journal of Food Science and Technology, 1, 35–42.

    Google Scholar 

  108. Połeć, K., Barnaś, B., Kowalska, M., Dymek, M., Rachwalik, R., Sikora, E., Biela, A., Kobiałka, M., Wójcik, K., & Hąc-Wydro, K. (2019). The influence of the essential oil extracted from hops on monolayers and bilayers imitating plant pathogen bacteria membranes. Colloids and Surfaces b: Biointerfaces, 173, 672–680. https://doi.org/10.1016/j.colsurfb.2018.10.047

    CAS  Article  PubMed  Google Scholar 

  109. Popkin, B., & Gordon-Larsen, P. (2004). The nutrition transition: Worldwide obesity dynamics and their determinants. Nature, 28, S2-29.

    Google Scholar 

  110. Possemiers, S., Heyerick, A., Robbens, V., De Keukeleire, D., & Verstraete, W. (2005). Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. Journal of Agricultural and Food Chemistry, 53(16), 6281–6288. https://doi.org/10.1021/jf0509714

  111. Priyanka., & Khanam, S. (2020). Selection of suitable model for the supercritical fluid extraction of carrot seed oil: A parametric study. LWT, 119, 108815. https://doi.org/10.1016/j.lwt.2019.108815

    CAS  Article  Google Scholar 

  112. Quintero Quiroz, J., Naranjo Duran, A. M., Silva Garcia, M., Ciro Gomez, G. L., & Rojas Camargo, J. J. (2019). Ultrasound-assisted extraction of bioactive compounds from annatto seeds, evaluation of their antimicrobial and antioxidant activity, and identification of main compounds by LC/ESI-MS analysis. International Journal of Food Science, 2019, 5–7. https://doi.org/10.1155/2019/3721828

    CAS  Article  Google Scholar 

  113. Rapinel, V., Chemat, A., Santerre, C., Belay, J., Hanaei, F., Vallet, N., Jacques, L., & Fabiano-Tixier, A. S. (2020). 2-Methyloxolane as a bio-based solvent for green extraction of aromas from hops (Humulus lupulus L.). Molecules, 25(7). https://doi.org/10.3390/molecules25071727

  114. Rettberg, N., Biendl, M., & Garbe, L. A. (2018). Hop aroma and hoppy beer flavor: Chemical backgrounds and analytical tools—A review. Journal of the American Society of Brewing Chemists, 76(1), 1–20. https://doi.org/10.1080/03610470.2017.1402574

    CAS  Article  Google Scholar 

  115. Roehrer, S., Behr, J., Stork, V., Ramires, M., Médard, G., Frank, O., Kleigrewe, K., Hofmann, T., & Minceva, M. (2018). Xanthohumol C, a minor bioactive hop compound: Production, purification strategies and antimicrobial test. Journal of Chromatography b: Analytical Technologies in the Biomedical and Life Sciences, 1095(February), 39–49. https://doi.org/10.1016/j.jchromb.2018.07.018

    CAS  Article  PubMed  Google Scholar 

  116. Roepe, L. R. (2019). Hop Water, a Non-Alcoholic Favorite of Brewers, Goes Mainstream. October. https://oct.co/essays/hop-water-non-alcoholic-beer

  117. Rybka, A., Heřmánek, P., & Honzík, I. (2021). Effect of drying temperature in hop dryer on hop quality. Research in Agricultural Engineering, 67(1), 1–7. https://doi.org/10.17221/61/2020-RAE

  118. Sacks, L. E., & Humphreys, E. M. (1951). Antagonistic effect of serum on bacteriostatic action of lupulone. Proceedings of the Society for Experimental Biology and Medicine, 76(2), 234–238. https://doi.org/10.3181/00379727-76-18446

    CAS  Article  PubMed  Google Scholar 

  119. Saito, K., Matsuo, Y., Imafuji, H., Okubo, T., Maeda, Y., Sato, T., Shamoto, T., Tsuboi, K., Morimoto, M., Takahashi, H., Ishiguro, H., & Takiguchi, S. (2018). Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Science, 109(1), 132–140. https://doi.org/10.1111/cas.13441

    CAS  Article  PubMed  Google Scholar 

  120. Salinas, F., Vardanega, R., Espinosa-Álvarez, C., Jimenéz, D., Muñoz, W. B., Ruiz-Domínguez, M. C., Meireles, M. A. A., Cerezal-Mezquita, P. (2020). Supercritical fluid extraction of chañar (Geoffroea decorticans) almond oil: Global yield, kinetics and oil characterization. Journal of Supercritical Fluids, 161. https://doi.org/10.1016/j.supflu.2020.104824

  121. Sansawat, T., Lee, H. C., Singh, P., Ha, S. D., & Kang, I. (2019). Inhibition of Listeria monocytogenes in deli-style Turkey using hop acids, organic acids, and their combinations. Poultry Science, 98(3), 1539–1544. https://doi.org/10.3382/ps/pey398

    CAS  Article  PubMed  Google Scholar 

  122. Sansawat, T., Lee, H. C., Zhang, L., Ryser, E. T., & Kang, I. (2016). Antilisterial effects of different hop acids in combination with potassium acetate and potassium diacetate at 7 and 37°C. Food Control, 59, 256–261. https://doi.org/10.1016/j.foodcont.2015.05.031

    CAS  Article  Google Scholar 

  123. Sansawat, T., Singh, P., Lee, H. C., Silva, M. F., Ha, S. D., & Kang, I. (2018). Antilisterial effects of hop alpha and beta acids in Turkey slurry at 7 and 37 °C. Poultry Science, 97(6), 2207–2210. https://doi.org/10.3382/ps/pex422

    CAS  Article  PubMed  Google Scholar 

  124. Sansawat, T., Zhang, L., Jeong, J. Y., Xu, Y., Hessell, G. W., Ryser, E. T., Harte, J. B., Tempelman, R., & Kang, I. (2013). Inhibition of Listeria monocytogenes in full- and low-sodium frankfurters at 4, 7, or 10 °C using spray-dried mixtures of organic acid salts. Journal of Food Protection, 76(9), 1557–1567. https://doi.org/10.4315/0362-028X.JFP-12-388

    CAS  Article  PubMed  Google Scholar 

  125. Sanz, V., Torres, M. D., Vilariño, J. M. L., & Domínguez, H. (2019). What is new on the hop extraction ? Trends in Food Science & Technology, 93, 12–22. https://doi.org/10.1016/j.tifs.2019.08.018

    CAS  Article  Google Scholar 

  126. Schatz, R. D. (2019). How a hoppy tea startup draws craft brew lovers—And the sober curious. Forbes. https://www.forbes.com/sites/robindschatz/2019/10/29/how-a-hoppy-tea-startup-draws-craft-brew-loversand-the-sober-curious/?sh=1f9eeba1534b

  127. Seman, D. L., Hirschey, J. A., L., A., & Barney, M. (2004). Hop beta acid compositions for use in food products (Patent No. US 2004/0175480 A1).

  128. Sharma, B. R., Kumar, V., Kumar, S., & Panesar, P. S. (2020). Microwave assisted extraction of phytochemicals from Ficus racemosa. Current Research in Green and Sustainable Chemistry, 3(September), 100020. https://doi.org/10.1016/j.crgsc.2020.100020

    Article  Google Scholar 

  129. Shen, C., Geornaras, I., Kendall, P. A., & Sofos, J. N. (2009). Control of Listeria monocytogenes on frankfurters by dipping in hops beta acids solutions. Journal of Food Protection, 72(4), 702–706. https://doi.org/10.4315/0362-028X-67.11.2456

    CAS  Article  PubMed  Google Scholar 

  130. Shuja, A. (2018). Rapid drying extraction targeting oil resin plant extracts (Patent No. US9981203B2).

  131. Simpson, W. J., & Smith, A. R. W. (1992). Factors affecting antibacterial activity of hop compounds and their derivatives. Journal of Applied Bacteriology, 72(4), 327–334. https://doi.org/10.1111/j.1365-2672.1992.tb01843.x

    CAS  Article  Google Scholar 

  132. Steenackers, B., De Cooman, L., & De Vos, D. (2015). Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chemistry, 172, 742–756. https://doi.org/10.1016/j.foodchem.2014.09.139

    CAS  Article  PubMed  Google Scholar 

  133. Suzuki, K., Iijima, K., Sakamoto, K., Sami, M., & Yamashita, H. (2006). A review of hop resistance in beer spoilage lactic acid bacteria. Journal of the Institute of Brewing, 112(2), 173–191. https://doi.org/10.1002/j.2050-0416.2006.tb00247.x

  134. Teuber, M., & Schmalreck, A. F. (1973). Membrane leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Archiv Für Mikrobiologie, 94, 159–171. https://doi.org/10.1007/BF00416690

    CAS  Article  PubMed  Google Scholar 

  135. Toma, M., Vinatoru, M., Paniwnyk, L., & Mason, T. J. (2001). Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8(2), 137–142. https://doi.org/10.1016/S1350-4177(00)00033-X

    CAS  Article  PubMed  Google Scholar 

  136. Tungmunnithum, D., Drouet, S., Kabra, A., & Hano, C. (2020). Enrichment in antioxidant flavonoids of stamen extracts from Nymphaea lotus L. Using ultrasonic-assisted extraction and macroporous resin adsorption. Antioxidants, 9(7), 1–24. https://doi.org/10.3390/antiox9070576

  137. Tyśkiewicz, K., Gieysztor, R., Konkol, M., Szałas, J., & Rój, E. (2018). Essential Oils from Humulus lupulus scCO2 extract by hydrodistillation and microwave-assisted hydrodistillation. Molecules, 23, 2866. https://doi.org/10.3390/molecules23112866

    CAS  Article  PubMed Central  Google Scholar 

  138. U.S. Department of Agriculture, Food Safety and Inspection Service (USDA/FSIS). (2021). Safe and suitable ingredients used in the production of meat, poultry and egg products — Revision 55 | Food Safety and Inspection Service. In 7120.1. https://www.fsis.usda.gov/policy/fsis-directives/7120.1

  139. Veiga, B. A., Hamerski, F., Clausen, M. P., Errico, M., de Paula Scheer, A., & Corazza, M. L. (2021). Compressed fluids extraction methods, yields, antioxidant activities, total phenolics and flavonoids content for Brazilian Mantiqueira hops. Journal of Supercritical Fluids, 170(May 2020), 105155. https://doi.org/10.1016/j.supflu.2020.105155

  140. Villalobos-Delgado, L. H., Caro, I., Blanco, C., Bodas, R., Andrés, S., Giráldez, F. J., & Mateo, J. (2015). Effect of the addition of hop (infusion or powder) on the oxidative stability of lean lamb patties during storage. Small Ruminant Research, 125, 73–80. https://doi.org/10.1016/j.smallrumres.2015.02.008

    Article  Google Scholar 

  141. Wang, F., Zhang, Y., Xu, L., & Ma, H. (2020). An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT, 127, 109348. https://doi.org/10.1016/j.lwt.2020.109348

    CAS  Article  Google Scholar 

  142. Wang, L., Mckeith, A. G., Shen, C., Carter, K., Huff, A., Mckeith, R., Zhang, X., & Chen, Z. (2016). Effect of hops beta acids on the survival of unstressed- or acid-stress-adapted-Listeria monocytogenes and on the quality and sensory attributes of commercially cured ham slices. Journal of Food Science, 81(2), M445–M453. https://doi.org/10.1111/1750-3841.13201

    CAS  Article  PubMed  Google Scholar 

  143. Weber, N., Biehler, K., Schwabe, K., Haarhaus, B., Quirin, K. W., Frank, U., Schempp, C. M., & Wölfle, U. (2019). Hop extract acts as an antioxidant with antimicrobial effects against Propionibacterium acnes and Staphylococcus aureus. Molecules, 24(2), 223–236. https://doi.org/10.3390/molecules24020223

    CAS  Article  PubMed Central  Google Scholar 

  144. Xu, D., Chen, T., Liu, Y. (2020). The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polymer Bulletin, 0123456789. https://doi.org/10.1007/s00289-020-03294-1

  145. Zain, M. S. C., Lee, S. Y., Teo, C. Y., & Shaari, K. (2021). Adsorption/desorption characteristics and simultaneous enrichment of orientin, isoorientin, vitexin and isovitexin from hydrolyzed oil palm leaf extract using macroporous resins. Process, 9(659).

  146. Zanoli, P., & Zavatti, M. (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L. Journal of Ethnopharmacology, 116, 383–396. https://doi.org/10.1016/j.jep.2008.01.011

    CAS  Article  PubMed  Google Scholar 

  147. Zhao, J., Zhao, G., & Liu, Y. (2019). Antibacterial activity of a hexahydro-β-acids/methyl-β-cyclodextrin inclusion complex against bacteria related to foodborne illness. Journal of Food Safety, 39(5), 1–10. https://doi.org/10.1111/jfs.12678

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for providing research scholarship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tarsila Rodrigues Arruda or Patrícia Campos Bernardes.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues Arruda, T., Fontes Pinheiro, P., Ibrahim Silva, P. et al. Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02716-w

Download citation

Keywords

  • Hops
  • Bioactive compounds
  • Extraction of bioactive compounds
  • Emerging extraction technologies
  • Application in food matrices
  • Sensorial perception