Skip to main content
Log in

A Comprehensive Study on Sorption, Water Barrier, and Physicochemical Properties of Some Protein- and Carbohydrate-Based Edible Films

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The main aim was to discuss the relation between water vapor transmission rate (WVTR) and moisture sorption isotherms (MSIs) of whey protein (WPI), soy protein isolate (SPI), and carboxymethyl cellulose (CMC) films. MSIs obtained using dynamic vapor sorption (DVS) instrument were fitted to GAB, BET, Oswin, Halsey, and Harkins–Jura models, and examined in detail with Peleg approach. BET and Oswin models had the highest R2 values (0.999). The MSI’s data were used to assess water vapor barrier interactions between permeability (P-calculated using WVTR), diffusivity (D), and solubility (S) properties and to compare their feasibility in P = DS simple equation. D and S were calculated using different approaches of Fick’s second law and Henry’s law. Calculated, measured, and predicted all different P, D, and S presented good operational interchangeability (r = 0.84–0.95). CMC films had the highest WVTR at 1008.06 g/m2 day; those of WPI and SPI films were 865.79 and 595.71 g/m2 day at studied condition. The hydrophilicity of CMC films deduced from its high water vapor adsorption capacity might lead to the lowest D among the studied films. This might result in swelling of film matrix and reduction of film porosity. It was interesting to note that films having the highest So (128.8 cm3/cm3 cmHg) presented the lowest diffusivity (2.51 × 10−11 cm2/s) with a highest WVTR. Oxygen barrier, mechanical, thermal, and structural measurements were also applied to characterize the films. SPI film was the finest film in terms of its barrier film properties and good film-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The datasets supporting the conclusions of this article are included within the article.

Abbreviations

r :

Correlation coefficients

R 2 :

Determination coefficient

t :

Time (s or day)

p :

Pressure (cmHg or atm)

A :

Area (cm2)

M w :

Molecular weight (g/mol)

ρ :

Density (g/cm3)

N :

Sample size

Y p :

Predicted values

Y m :

Measured values

m o :

Monolayer moisture content (%)

a w :

Water activity

m :

Equilibrium moisture content (%)

C :

Guggenheim constant

K :

Factor correcting properties of the multilayer molecules corresponding to the bulk liquid

T g :

Glass transition temperature (°C)

ΔH :

Enthalpy (kJ/kg)

k 1 :

Peleg rate constant of MSI’s of the films (hour per g/100 g on dry basis)

k 2 :

Peleg capacity constant of MSI’s of the films (reciprocal of g/100 g on a dry basis)

k 1′:

Peleg rate constant of the films exposed to direct to 30, 50, and 75%RH (hour per g/100 g on dry basis)

k 2′:

Peleg capacity constant of the films exposed to direct to 30, 50, and 75%RH (reciprocal of g/100 g on a dry basis)

D :

Diffusivity coefficients of water vapor (cm2/s)

S :

Solubility coefficients of water vapor (cm3/cm3 cmHg)

P :

Permeability coefficients of water vapor (g cm/cm2 cmHg s)

M :

Amounts of water vapor absorbed (g)

n :

A mathematical/trigonometric variable

l :

Film thickness (cm or mm)

b m :

The slope of MSI (cm3/cm3 film)

a :

Constant for MSI model

b :

Constant for MSI model

rH :

Constant for MSI model

30 :

Measured or calculated from 30%RH data

50 :

Measured or calculated from 50%RH data

75 :

Measured or calculated from 75%RH data

t :

At a time

:

Infinite time

o :

Calculated using measured data

WPI :

Whey protein isolate

SPI :

Soy protein isolate

CMC :

Carboxymethyl cellulose

DVS :

Dynamic Vapor Sorption

RH :

Relative humidity (%)

MSI :

Moisture sorption isotherm

WVTR :

Water vapor transmission rate (g/mday)

STP :

Standard temperature and pressure

OTR :

Oxygen transmission rate (cm3/m2 day)

RMSE :

The root of mean square error

ASTM :

American society for testing and materials

TS :

Tensile strength (MPa)

E%:

Percent elongation (%)

FTIR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscopy

References

  • Andrade, P. D. D., Lemus, M. R., & Perez, C. C. E. (2011). Models of sorption isotherms for food: Uses and limitations. Vitae, 18(3), 325–334.

    Google Scholar 

  • Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-Pearson and Spearman correlation coefficients: Meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers, 17(2), 148–151.

    CAS  PubMed  Google Scholar 

  • ASTM. (1993). ASTM Book Stand 08.01:316 Standard test methods for tensile properties of thin plastic sheeting. ASTM D882–91. ASTM, Philadelphia, PA, USA

  • ASTM D3985-05v e1. (2010). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor.

  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1–11.

    Google Scholar 

  • Aziz, S. G.-G., & Almasi, H. (2018). Physical characteristics release properties and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11(8), 1552–1565.

    CAS  Google Scholar 

  • Barham, A. S., Tewes, F., & Healy, A. M. (2015). Moisture diffusion and permeability characteristics of hydroxypropylmethylcellulose and hard gelatin capsules. International Journal of Pharmaceutics, 478(2), 796–803.

    CAS  PubMed  Google Scholar 

  • Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. Journal of the Science of Food and Agriculture, 97(3), 858–867.

    CAS  PubMed  Google Scholar 

  • Blahovec, J., & Yanniotis, S. (2009). Modified classification of sorption isotherms. Journal of Food Engineering, 91(1), 72–77.

    Google Scholar 

  • Broudin, M., Le Saux, V., Le Gac, P. Y., Champy, C., Robert, G., Charrier, P., & Marco, Y. (2015). Moisture sorption in polyamide 6.6: Experimental investigation and comparison to four physical-based models. Polymer Testing, 43, 10–20.

    CAS  Google Scholar 

  • Carpiné, D., Dagostin, J. L. A., Bertan, L. C., & Mafra, M. R. (2015). Development and characterization of soy protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: Barrier mechanical and thermal properties. Food and Bioprocess Technology, 8(8), 1811–1823.

    Google Scholar 

  • Cho, S. Y., & Rhee, C. (2002). Sorption characteristics of soy protein films and their relation to mechanical properties. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 35(2), 151–157.

    CAS  Google Scholar 

  • Ciannamea, E. M., Castillo, L. A., Barbosa, S. E., & De Angelis, M. G. (2018). Barrier properties and mechanical strength of bio-renewable, heat-sealable films based on gelatin glycerol and soybean oil for sustainable food packaging. Reactive and Functional Polymers, 125, 29–36.

    CAS  Google Scholar 

  • Coupland, J. N., Shaw, N. B., Monahan, F. J., O’Riordan, E. D., & O’Sullivan, M. (2000). Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. Journal of Food Engineering, 43(1), 25–30.

    Google Scholar 

  • Crank, J. (1979). The mathematics of diffusion. Oxford University Press.

    Google Scholar 

  • de Moraes Crizel, T., de Oliveira Rios, A., Alves, V. D., Bandarra, N., Moldão-Martins, M., & Flôres, S. H. (2018). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology, 11(3), 536–550.

    Article  CAS  Google Scholar 

  • de Souza, K. C., Correa, L. G., da Silva, T. B. V., Moreira, T. F. M., de Oliveira, A., Sakanaka, L. S., Dias, M. I., Barros, L., Ferreira, I. C., & Valderrama, P. (2020). Soy protein isolate films incorporated with pinhão (Araucaria angustifolia (Bertol) Kuntze) extract for potential use as edible oil active packaging. Food and Bioprocess Technology, 13, 998–1008.

    Google Scholar 

  • Echeverría, I., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2016). Structure functionality and active release of nanoclay–soy protein films affected by clove essential oil. Food and Bioprocess Technology, 9(11), 1937–1950.

    Google Scholar 

  • Edrisi Sormoli, M., & Langrish, T. A. G. (2016). Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: Use of WPI antioxidant activity and moisture sorption isotherms. LWT - Food Science and Technology, 72, 1–8.

    CAS  Google Scholar 

  • Enrione, J. I., Hill, S. E., & Mitchell, J. R. (2007). Sorption behavior of mixtures of glycerol and starch. Journal of Agricultural and Food Chemistry, 55(8), 2956–2963.

    CAS  PubMed  Google Scholar 

  • Erdem, B. G., & Kaya, S. (2021). Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates. Food Chemistry, 339, 127976.

  • Fathi Achachlouei, B., & Zahedi, Y. (2018). Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydrate Polymers, 199, 415–425.

    CAS  PubMed  Google Scholar 

  • Galizia, M., Stevens, K. A., Paul, D. R., & Freeman, B. D. (2017). Modeling gas permeability and diffusivity in HAB-6FDA polyimide and its thermally rearranged analogs. Journal of Membrane Science, 537, 83–92.

    CAS  Google Scholar 

  • Galus, S., & Lenart, A. (2019). Optical mechanical and moisture sorption properties of whey protein edible films. Journal of Food Process Engineering, 42(6), e13245.

  • Galus, S. (2018). Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocolloids, 85, 233–241.

    CAS  Google Scholar 

  • Gökkaya Erdem, B., Dıblan, S., & Kaya, S. (2019). Development and structural assessment of whey protein isolate/sunflower seed oil biocomposite film. Food and Bioproducts Processing, 118, 270–280.

    Google Scholar 

  • Guerrero, P., Garrido, T., Leceta, I., & de la Caba, K. (2013). Films based on proteins and polysaccharides: Preparation and physical–chemical characterization. European Polymer Journal, 49(11), 3713–3721.

    CAS  Google Scholar 

  • Guimarães, A., Ramos, Ó., Cerqueira, M., Venâncio, A., & Abrunhosa, L. (2020). Active whey protein edible films and coatings incorporating Lactobacillus buchneri for Penicillium nordicum control in cheese. Food and Bioprocess Technology, 13(6), 1074–1086.

    Google Scholar 

  • Hong, T. D., Edgington, S., Ellis, R. H., de Muro, M. A., & Moore, D. (2005). Saturated salt solutions for humidity control and the survival of dry powder and oil formulations of Beauveria bassiana conidia. Journal of Invertebrate Pathology, 89(2), 136–143.

    PubMed  Google Scholar 

  • Huntrakul, K., & Harnkarnsujarit, N. (2020). Effects of plasticizers on water sorption and aging stability of whey protein/carboxy methyl cellulose films. Journal of Food Engineering, 272, 109809.

  • Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving hermetically sealable edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT, 134, 110102.

  • Jannatyha, N., Shojaee-Aliabadi, S., Moslehishad, M., & Moradi, E. (2020). Comparing mechanical barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. International Journal of Biological Macromolecules, 164, 2323–2328.

    CAS  PubMed  Google Scholar 

  • Kaya, S., & Kaya, A. (2000). Microwave drying effects on properties of whey protein isolate edible films. Journal of Food Engineering, 43(2), 91–96.

    Google Scholar 

  • Kokoszka, S., Debeaufort, F., Lenart, A., & Voilley, A. (2010). Liquid and vapour water transfer through whey protein/lipid emulsion films. Journal of the Science of Food and Agriculture, 90(10), 1673–1680.

    CAS  PubMed  Google Scholar 

  • Lara, B. R. B., Dias, M. V., Guimarães Junior, M., de Andrade, P. S., de Souza Nascimento, B., Ferreira, L. F., & Yoshida, M. I. (2020). Water sorption thermodynamic behavior of whey protein isolate/polyvinyl alcohol blends for food packaging. Food Hydrocolloids, 103, 105710.

  • Lin, H., & Freeman, B. D. (2004). Gas solubility diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 239(1), 105–117.

    CAS  Google Scholar 

  • Ling, S., Qi, Z., Watts, B., Shao, Z., & Chen, X. (2014). Structural determination of protein-based polymer blends with a promising tool: Combination of FTIR and STXM spectroscopic imaging. Physical Chemistry Chemical Physics, 16(17), 7741–7748.

    CAS  PubMed  Google Scholar 

  • Liu, L. C., Wang, J. W., He, Y. H., & Gong, H. R. (2017). Solubility diffusivity and permeability of hydrogen at PdCu phases. Journal of Membrane Science, 542, 24–30.

    CAS  Google Scholar 

  • Maghami, S., Mehrabani-Zeinabad, A., Sadeghi, M., Sánchez-Laínez, J., Zornoza, B., Téllez, C., & Coronas, J. (2019). Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes. Chemical Engineering Science, 205, 58–73.

    CAS  Google Scholar 

  • Moore, J. C., DeVries, J. W., Lipp, M., Griffiths, J. C., & Abernethy, D. R. (2010). Total protein methods and their potential utility to reduce the risk of food protein adulteration. Comprehensive Reviews in Food Science and Food Safety, 9(4), 330–357.

    CAS  PubMed  Google Scholar 

  • Mrkić, S., Galić, K., Ivanković, M., Hamin, S., & Ciković, N. (2006). Gas transport and thermal characterization of mono-and di-polyethylene films used for food packaging. Journal of Applied Polymer Science, 99(4), 1590–1599.

    Google Scholar 

  • Osés, J., Fabregat-Vázquez, M., Pedroza-Islas, R., Tomás, S. A., Cruz-Orea, A., & Maté, J. I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92(1), 56–62.

    Google Scholar 

  • Otoni, C. G., Avena-Bustillos, R. J., Olsen, C. W., Bilbao-Sainz, C., & McHugh, T. H. (2016). Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 57, 72–79.

    CAS  Google Scholar 

  • Peleg, M. (1988). An empirical-model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1217.

    Google Scholar 

  • Peltzer, M. A., Salvay, A., Delgado, J. F., de la Osa, O., & Wagner, J. R. (2018). Use of residual yeast cell wall for new biobased materials production: Effect of plasticization on film properties. Food and Bioprocess Technology, 11(11), 1995–2007.

    CAS  Google Scholar 

  • Perez-Gago, M. B., & Krochta, J. M. (2000). Drying temperature effect on water vapor permeability and mechanical properties of whey protein−lipid emulsion films. Journal of Agricultural and Food Chemistry, 48(7), 2687–2692.

    CAS  PubMed  Google Scholar 

  • Polatoğlu, B., Beşe, A. V., Kaya, M., & Aktaş, N. (2011). Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food and Bioproducts Processing, 89(4), 449–456.

    Google Scholar 

  • Redl, A., Gontard, N., & Guilbert, S. (1996). Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. Journal of Food Science, 61(1), 116–120.

    CAS  Google Scholar 

  • Sanchez, C. M., Song, T., Brennecke, J. F., & Freeman, B. D. (2020). Hydrogen stable supported ionic liquid membranes with silver carriers: Propylene and propane permeability and solubility. Industrial & Engineering Chemistry Research, 59(12), 5362–5370.

    CAS  Google Scholar 

  • Shaikh, M., Haider, S., Ali, T. M., & Hasnain, A. (2019). Physical thermal mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. International Journal of Biological Macromolecules, 124, 209–219.

    CAS  PubMed  Google Scholar 

  • Siracusa, V. (2012). Food packaging permeability behaviour: A report. International Journal of Polymer Science. https://doi.org/10.1155/2012/302029

    Article  Google Scholar 

  • Smith, A. L., Ashcraft, J. N., & Hammond, P. T. (2006). Sorption isotherms sorption enthalpies diffusion coefficients and permeabilities of water in a multilayer PEO/PAA polymer film using the quartz crystal microbalance/heat conduction calorimeter. Thermochimica Acta, 450(1–2), 118–125.

    CAS  Google Scholar 

  • Su, J.-F., Huang, Z., Liu, K., Fu, L.-L., & Liu, H.-R. (2007). Mechanical properties biodegradation and water vapor permeability of blend films of soy protein isolate and poly (vinyl alcohol) compatibilized by glycerol. Polymer Bulletin, 58(5–6), 913–921.

    CAS  Google Scholar 

  • Su, J.-F., Huang, Z., Yuan, X.-Y., Wang, X.-Y., & Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1), 145–153.

    CAS  Google Scholar 

  • Suppakul, P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S., & Munchukangwan, N. (2013). Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing-antiplasticizing effects. Lwt-Food Science and Technology, 50(1), 290–297.

    CAS  Google Scholar 

  • Suppiah, K., Leng, T. P., Husseinsyah, S., Rahman, R., Keat, Y. C., & Heng, C. W. (2019). Thermal properties of carboxymethyl cellulose (CMC) filled halloysite nanotube (HNT) bio-nanocomposite films. Materials Today: Proceedings, 16, 1611–1616.

    CAS  Google Scholar 

  • Tabari, M. (2017). Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41.

    PubMed Central  Google Scholar 

  • Tongnuanchan, P., Benjakul, S., Prodpran, T., & Nilsuwan, K. (2015). Emulsion film based on fish skin gelatin and palm oil: Physical structural and thermal properties. Food Hydrocolloids, 48, 248–259.

    CAS  Google Scholar 

  • Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein–chitosan–sunflower oil edible film: Mechanical barrier and structural properties. Lwt-Food Science and Technology, 50(2), 531–537.

    CAS  Google Scholar 

  • Van Krevelen, D. W., & Te Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier.

    Google Scholar 

  • Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263.

    CAS  Google Scholar 

  • Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. Lwt-Food Science and Technology, 42(10), 1688–1695.

    CAS  Google Scholar 

  • Zahedi, Y., Ghanbarzadeh, B., & Sedaghat, N. (2010). Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. Journal of Food Engineering, 100(1), 102–108.

    CAS  Google Scholar 

  • Zhang, X., Zhao, Y., Li, Y., Zhu, L., Fang, Z., & Shi, Q. (2020). Physicochemical mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. International Journal of Biological Macromolecules, 153, 892–901.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Kaya emerged the study conception and design. B. Gökkaya Erdem carried out the experiments and acquisition of data collected. S. Diblan decided the theoretical formalism and performed the analytic calculations in consultation with S. Kaya. S. Diblan took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript. S. Kaya contributed to the final version and critical revision of the manuscript.

Corresponding author

Correspondence to Sevgin Dıblan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökkaya Erdem, B., Dıblan, S. & Kaya, S. A Comprehensive Study on Sorption, Water Barrier, and Physicochemical Properties of Some Protein- and Carbohydrate-Based Edible Films. Food Bioprocess Technol 14, 2161–2179 (2021). https://doi.org/10.1007/s11947-021-02712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02712-0

Keywords