Skip to main content

Residual Starch Packaging Derived from Potato Washing Slurries to Preserve Fruits

Abstract

Non-biodegradable petroleum-based plastics are still widely used by the food industry for packaging applications and, due to that bio-based raw materials such as starch, have been attracting growing interest from the packaging industries as a biocompatible alternative material. During the industrial processing of potato, a large amount of residual starch is produced from the washing of the raw material. Starch-like biopolymers have been proposed for the formulation of biodegradable materials. The application of starch in the packaging production depends on chemical, physical and functional properties to form gels and films. The aim of this study was to develop packaging films made from potato processing residual starch combined with polar organic solvents (glycerol and acetic acid) that can be fully obtained from renewable sources. The characterization of the material obtained was performed evaluating the microbiological stability, mechanical properties, formed bonds and barrier characteristics and, in order to demonstrate the real application in fruits preservation the material was direct applied into papaya fruits (Carica papaya) by the immersion method. The present study exhibits the potential of starch residual from potato industrialization to manufacture packaging films. The films achieved the expected results for microbiological analysis, water vapor permeability and Fourier Transform Infrared spectroscopy. The qualitative analysis of the shelf stability test showed the potential of the films in fruit preservation envisioning the application in food industry for packaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abhilash, G., Sabharwal, S., Dubey, A., Paul, J., John, H., & Joseph, R. (2009). Preparation of low-protein natural rubber latex: Effect of polyethylene glycol. Journal of Applied Polymer Science, 114(2), 806–810.

    CAS  Article  Google Scholar 

  2. Agência Nacional de Vigilância Sanitária - ANVISA. (2001). Regulamento técnico sobre padrões microbiológicos para alimentos seção 1 (Resolução de Diretoria Colegiada - RDC nº 12, de 02 de Janeiro de 2001).

  3. Agência Nacional de Vigilância Sanitária - ANVISA. (2005). Regulamento técnico para produtos de cereais amidos farinhas e farelos (Resolução de Diretoria Colegiada - RDC nº 263, de 22 de setembro de 2005).

  4. American Society for Testing and Materials - ASTM. (2016a). Standard test methods for vulcanized rubber and thermoplastic elastomers – tension. ASTM D412–16e1. ASTM International.

  5. American Society for Testing and Materials - ASTM. (2016b). Standard test methods for water vapor transmission of materials. ASTM E96/E96M-16. ASTM International.

  6. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. F. (2009). Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Research International, 42(8), 1113–1121.

    CAS  Article  Google Scholar 

  7. Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., & Yamamoto, N. (1997). Edible films made from gelatin, soluble starch and polyols, Part 3. Food Chemistry, 60(4), 593–604.

    CAS  Article  Google Scholar 

  8. Assis, O. B. G., & Britto, D. (2014). Review: Edible protective coatings for fruits: Fundamentals and applications. Brazilian Journal of Food Technology, 17(2), 87–97.

    Article  Google Scholar 

  9. Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on biobased polymers and their future trends. Progress in Biomaterials, 2(1), 1–16.

    Article  Google Scholar 

  10. Bader, H. G., & Göritz, D. (1994a). Investigations on high amylose corn starch films. Part 1: Wide angle X-ray scattering (WAXS). Starch-Stärke, 46(6), 229–232.

  11. Bader, H. G., & Göritz, D. (1994b). Investigations on high amylose corn starch films. Part 2: Water vapor sorption. Starch-Stärke, 46(7), 249–252.

  12. Bader, H. G., & Göritz, D. (1994c). Investigations on high amylose corn starch films. Part 3: Stress strain behavior. Starch-Stärke, 46(11), 435–439.

  13. Barros, N. R., Miranda, M. C. R., Borges, F. A., Gemeinder, J. L. P., Mendonça, R. J., Cilli, E. M., & Herculano, R. D. (2017). Development and in vitro characterization of a future transdermal patch for enuresis treatment. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(17), 871–876.

    Article  CAS  Google Scholar 

  14. Batista, P. F., Santos, A. E. O., Pires, M. M. M. L., Dantas, B. F., Peixoto, A. R., & Aragão, C. A. (2007). Utilization of PVC film and edible films to extend the postharvest conservation of yellow melons. Horticultura Brasileira, 25(4), 572–576.

    Article  Google Scholar 

  15. Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82(1), 17–25.

    CAS  Article  Google Scholar 

  16. Bitik, A., Sumnu, G., & Oztop, M. (2019). Physicochemical and structural characterization of microfluidized and sonicated legume starches. Food and Bioprocess Technology, 12(7), 1144–1156.

    CAS  Article  Google Scholar 

  17. Brandelero, R. P. H., Yamashita, F., & Grossmann, M. V. E. (2010). The effect of surfactant Tween 80 on the hydrophilicity, water vapor permeation, and the mechanical properties of cassava starch and poly (butylene adipate-co-terephthalate) (PBAT) blend films. Carbohydrate Polymers, 82(4), 1102–1109.

    CAS  Article  Google Scholar 

  18. Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569–3580.

    CAS  Article  Google Scholar 

  19. Canella, K. M., & Garcia, R. B. (2001). Characterization of chitosan by gel permeation chromatography - Influence of preparation method and solvent. Química Nova, 24(1), 13–17.

    Article  Google Scholar 

  20. Castricini, A., Coneglian, R. C. C., & da Silva Vasconcellos, M. A. (2010). Quality and ripening of “golden” papayas coated with cassava starch film. Revista Trópica: Ciências Agrárias e Biológicas, 4(1), 32–41.

    Google Scholar 

  21. Castricini, A., Coneglian, R. C. C., & Deliza, R. (2012). Starch edible coating of papaya: Effect on sensory characteristics. Food Science and Technology, 32(1), 84–92.

    Article  Google Scholar 

  22. Chang, Y. P., Cheah, P. B., & Seow, C. C. (2000). Plasticizing - antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. Journal of Food Science, 65(3), 445–451.

    CAS  Article  Google Scholar 

  23. Charoenthai, N., Kleinebudde, P., & Puttipipatkhachorn, S. (2007). Use of chitosan-alginate as alternative pelletization aid to mmicrocrystalline cellulose in extrusion/spheronization. Journal of Pharmaceutical Sciences, 96(9), 2469–2484.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Cuq, B., Gontard, N., Cuq, J. L., & Guilbert, S. (1996). Functional properties of myofibrillar protein-based biopackaging as affected by film thickness. Journal of Food Science, 61(3), 580–584.

    CAS  Article  Google Scholar 

  25. Da Silva, P. L., Gomes, A. M. M., Ricardo, N. M. P. S., & Machado, T. F. (2016). Preparation and characterization of phosphorylated starch blends with chitosan and polyvinyl alcohol. Química Nova, 39(4), 450–455.

    Google Scholar 

  26. De Laurentiis, V., Corrado, S., & Sala, S. (2018). Quantifying household waste of fresh fruit and vegetables in the EU. Waste Management, 77, 238–251.

    PubMed  Article  PubMed Central  Google Scholar 

  27. Dos Santos, S. F., Cardoso, R. C. V., Borges, Í. M. P., & Costa e Almeida, A., Andrade, E. S., Ferreira, I. O., & do Carmo Ramos, L. . (2020). Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: Analysis of determinants, volumes and reduction strategies. Waste Management, 101, 161–170.

    PubMed  Article  PubMed Central  Google Scholar 

  28. Escamilla-García, M., Rodríguez-Hernández, M. J., Hernández-Hernández, H. M., Delgado-Sánchez, L. F., García-Almendárez, B. E., Amaro-Reyes, A., & Regalado-González, C. (2018). Effect of an edible coating based on chitosan and oxidized starch on shelf life of Carica papaya L., and its physicochemical and antimicrobial properties. Coatings8(9), 318.

  29. Façanha, R. V., Spricigo, P. C., Purgatto, E., & Jacomino, A. P. (2019). Combined application of ethylene and 1-methylcyclopropene on ripening and volatile compound production of “Golden” papaya. Postharvest Biology and Technology, 151, 160–169.

    Article  CAS  Google Scholar 

  30. Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Collares-Queiroz, F. P., & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers, 95(2), 681–689.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Farias, M. G., Carvalho, C. W. P., Takeiti, C. Y., & Ascheri, J. L. R. (2012). The effect of water vapor permeability, water activity, wettability and water solubility in starch films and acerola pulp. Embrapa Agroindústria Tropical, 2012, 135–137.

    Google Scholar 

  32. Ferreira, D. C., Molina, G., & Pelissari, F. M. (2020). Effect of edible coating from cassava starch and babassu flour (Orbignya phalerata) on Brazilian Cerrado fruits quality. Food and Bioprocess Technology, 13(1), 172–179.

    CAS  Article  Google Scholar 

  33. Fonseca, L. M., Gonçalves, J. R., El Halal, S. L. M., Pinto, V. Z., Dias, A. R. G., Jacques, A. C., & Zavareze, E. R. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT-Food Science and Technology, 60(2), 714–720.

    CAS  Article  Google Scholar 

  34. Food and Agriculture Organization of the United Nations - FAO (2018). Retrieved February 26, 2021, from http://www.fao.org/platform-food-loss-waste/en/

  35. Food and Agriculture Organization of the United Nations - FAO (2020). FAOSTAT - Crops. Retrieved June 20, 2021, from http://www.fao.org/faostat/en/#data/QC

  36. Food and Drugs Administration - FDA. (1998). Bacteriological analytical manual, Revision A (8th ed.)

  37. Galgano, F., Condelli, N., Favati, F., Di Bianco, V., Perretti, G., & Caruso, M. C. (2015). Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Italian Journal of Food Science, 27(1), 1–20.

    CAS  Google Scholar 

  38. García, M. A., Martino, M. N., & Zaritzky, N. E. (2000). Microstructural characterization of plasticized starch-based films. Starch-Stärke, 52(4), 118–124.

    Article  Google Scholar 

  39. Gemeinder, J. L. P., Barros, N. R., Pegorin, G. S., Singulani, J. L., Borges, F. A., Del Arco, M. C. G., Giannini, M. J. S., Almeida, A. M. F., Salvador, S. L. S., & Herculano, R. D. (2021). Gentamicin encapsulated within a biopolymer for the treatment of Staphylococcus aureus and Escherichia coli infected skin ulcers. Journal of Biomaterials Science, Polymer Edition, 32(1), 93–111.

    CAS  Article  Google Scholar 

  40. Gontard, N., Guilbert, S., & Cuq, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206–211.

    CAS  Article  Google Scholar 

  41. Henrique, C. M., Cereda, M. P., & Sarmento, S. B. S. (2008). Physical characteristics of cassava modified starch films. Food Science and Technology, 28(1), 231–240.

    CAS  Article  Google Scholar 

  42. Hoover, D., & Moreno, L. (2017). Estimating quantities and types of food waste at the city level. Natural Resources Defense Council - NRDC. Retrieved February 26, 2021, from https://www.nrdc.org/sites/default/files/food-waste-city-level-report.pdf

  43. International Standards Organization - ISO. (2004). Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of presumptive Bacillus cereus - Colony-count technique at 30°C. ISO, 7932, 2004.

    Google Scholar 

  44. International Standards Organization - ISO. (2017). Microbiology of the food chain - preparation of test samples, initial suspension and decimal dilutions for microbiological examination - Part 1: General rules for the preparation of the initial suspension and decimal dilutions. ISO, 6887–1, 2017.

    Google Scholar 

  45. International Standards Organization - ISO. (2020). Microbiology of the food chain - preparation of test samples, initial suspension and decimal dilutions for microbiological examination - Part 5: Specific rules for the preparation of milk and milk products. ISO, 6887–5, 2020.

    Google Scholar 

  46. Irissin-Mangata, J., Bauduin, G., Boutevin, B., & Gontard, N. (2001). New plasticizers for wheat gluten films. European Polymer Journal, 37(8), 1533–1541.

    CAS  Article  Google Scholar 

  47. Islam, M. Z., Saha, T., Monalisa, K., & Hoque, M. M. (2019). Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. Journal of Food Measurement and Characterization, 13(4), 2951–2960.

    Article  Google Scholar 

  48. Jahdkaran, E., Hosseini, S. E., Mohammadi Nafchi, A., & Nouri, L. (2021). The effects of methylcellulose coating containing carvacrol or menthol on the physicochemical, mechanical, and antimicrobial activity of polyethylene films. Food Science & Nutrition, 9(5), 2768–2778.

    CAS  Article  Google Scholar 

  49. Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food and Bioprocess Technology, 5(6), 2058–2076.

    CAS  Article  Google Scholar 

  50. Karan, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green bioplastics as part of a circular bioeconomy. Trends in Plant Science, 24(3), 237–249.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Kasar, S. S., Giri, A. P., Pawar, P. K., & Maheshwari, V. L. (2019). A Protein α-amylase inhibitor from Withania somnifera and its role in overall quality and nutritional value improvement of potato chips during processing. Food and Bioprocess Technology, 12(4), 636–644.

    CAS  Article  Google Scholar 

  52. Keller, P. E., & Kouzes, R. T. (2017). Water vapor permeation in plastics (No. PNNL-26070). Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Retrieved June 20, 2021, from https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26070.pdf

  53. Khazir, S., & Shetty, S. (2014). Biobased polymers in the world. International Journal of Life Sciences Biotechnology and Pharma Research, 3(2), 35–43.

    Google Scholar 

  54. Laohakunjit, N., & Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch-Stärke, 56(8), 348–356.

    CAS  Article  Google Scholar 

  55. Liu, Z. (2005). Edible films and coatings from starches. In: J. H. Han (Ed.), Innovations in food packagings (1st ed.). Elsevier.

  56. Lourdin, D., Della Valle, G., & Colonna, P. (1995). Influence of amylose content on starch films and foams. Carbohydrate Polymers, 27(4), 261–270.

    CAS  Article  Google Scholar 

  57. Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Starch films: Production, properties and potential of utilization. Semina: Ciências Agrárias31(1), 137–156.

  58. Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. M., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(2), 379–386.

    CAS  Article  Google Scholar 

  59. Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. M., & Zaritzky, N. E. (2004). Barrier, mechanical an optical properties of plasticized yam starch films. Carbohydrate Polymers, 56, 129–135.

    CAS  Article  Google Scholar 

  60. Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3(1), 77–96.

    Article  Google Scholar 

  61. Maryam, A., Anwar, R., Malik, A. U., & Khan, S. A. (2021). Influence of macro‐perforated polyethylene terephthalate and low‐density polyethylene packaging films on quality and storability of strawberries. Journal of Food Processing and Preservation45(2), e15068.

  62. Matheus, J. R. V., De Assis, R. M., Correia, T. R., Marques, M. R. C., Leite, M. C. A. M., Pelissari, F. M., Miyahira, R. F., & Fai, A. E. C. (2021). Biodegradable and edible film based on persimmon (Diospyros kaki L.) used as a lid for minimally processed vegetables packaging. Food and Bioprocess Technology14(4), 765–779.

  63. McHugh, T. H., & Krochta, J. M. (1994). Sorbitol-vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841–845.

    CAS  Article  Google Scholar 

  64. Mohan, C. C., Harini, K., Karthikeyan, S., Sudharsan, K., & Sukumar, M. (2018). Effect of film constituents and different processing conditions on the properties of starch based thermoplastic films. International Journal of Biological Macromolecules, 120, 2007–2016.

    Article  CAS  Google Scholar 

  65. Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82–87.

    Article  CAS  Google Scholar 

  66. Muppalla, S. R., Kanatt, S. R., Chawla, S. P., & Sharma, A. (2014). Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2(2), 51–58.

    Article  Google Scholar 

  67. Ning, W., Jiugao, Y., Xiaofei, M., & Ying, W. (2007). The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydrate Polymers, 67(3), 446–453.

    Article  CAS  Google Scholar 

  68. Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., & Famá, L. (2019). Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate Polymers, 208, 221–231.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Oliveira, G., Gonçalves, I., Barra, A., Nunes, C., Ferreira, P., & Coimbra, M. A. (2020). Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Research International, 138, 109733.

  70. Omrani-Fard, H., Abbaspour-Fard, M. H., Khojastehpour, M., & Dashti, A. (2020). Gelatin/Whey protein-potato flour bioplastics: Fabrication and evaluation. Journal of Polymers and the Environment, 28(7), 2029–2038.

    Article  CAS  Google Scholar 

  71. Pelissari, F. M., Grossmann, M. V., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, mechanical, and barrier properties of cassava starch−chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499–7504.

    CAS  PubMed  Article  Google Scholar 

  72. Peltzer, M. A., Salvay, A. G., Delgado, J. F., de la Osa, O., & Wagner, J. R. (2018). Use of residual yeast cell wall for new biobased materials production: Effect of plasticization on film properties. Food and Bioprocess Technology, 11(11), 1995–2007.

    CAS  Article  Google Scholar 

  73. Pereira, V. A., Jr., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleracea (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180–188.

    CAS  Article  Google Scholar 

  74. Pilla, S. (2011). Handbook of bioplastics and biocomposites engineering applications. John Wiley & Sons.

    Book  Google Scholar 

  75. Pu, S., Ma, H., Deng, D., Xue, S., Zhu, R., Zhou, Y., & Xiong, X. (2018). Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PloS one, 13(1), e0190236.

  76. Qamar, S. A., Asgher, M., Bilal, M., & Iqbal, H. M. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 137, 109625.

  77. Rahmani, B., Hosseini, H., Khani, M., Farhoodi, M., Honarvar, Z., Feizollahi, E., Shokri, B., & Shojaee-Aliabadi, S. (2017). Development and characterisation of chitosan or alginate-coated low density polyethylene films containing Satureja hortensis extract. International Journal of Biological Macromolecules, 105, 121–130.

    CAS  PubMed  Article  Google Scholar 

  78. Reichert, C. L., Bugnicourt, E., Coltelli M. B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martínez, B. M., Alonso, R., Agostinis, L., Verstichel, S., Six, L., De Mets, S., Gómez, E. C., Ißbrücker, C., Geerinck, R., Nettleton, D. F., Campos, I., Sauter, E., Pieczyk, P., & Schmid, M. (2020). Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers, 12(7), 1558.

  79. Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14, 209–231.

    Article  CAS  Google Scholar 

  80. Rodsamran, P., & Sothornvit, R. (2017). Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films. Carbohydrate Polymers, 171, 94–101.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Salfinger, Y., & Tortorello, M. L. (Eds). (2001). Compendium of methods for the microbiological examination of foods. American Public Health Association - APHA.

  82. Sartori, C., Finch, D. S., Ralph, B., & Gilding, K. (1997). Determination of the cation content of alginate thin films by Ftir spectroscopy. Polymer, 38(1), 43–51.

    CAS  Article  Google Scholar 

  83. Silva, A. P. M., Oliveira, A. V., Pontes, S. M. A., Pereira, A. L. S., Filho, M. S. M. S., Rosa, M. F., & Azeredo, H. M. C. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymer, 211, 209–216.

    CAS  Article  Google Scholar 

  84. Silva, N., Junqueira, V. C. A., Silveira, N. F. A., Taniwaki, M. H., Santos, R. F. S., & Gomes, R. A. R. (2007). Manual of methods for microbiological analysis of Food (3rd ed.) Livraria Vilela.

  85. Smitha, B., Sridhar, S., & Khan, A. A. (2005). Chitosan–sodium alginate polyion complexes as fuel cell membranes. European Polymer Journal, 41(8), 1859–1866.

    CAS  Article  Google Scholar 

  86. Solomons, G., & Fryhle, C. (2001). Química Orgânica (7th ed.). LTC Editora.

  87. Souza, R. C., & Andrade, C. T. (2000). Investigation of corn starch gelatinization and extrusion processes. Polímeros, 10(1), 24–30.

    CAS  Article  Google Scholar 

  88. Streit, N. M., Canterle, L. P., Canto, M. W., & Hecktheuer, L. H. H. (2005). The Chlorophylls. Ciência Rural, 35(3), 748–755.

    CAS  Article  Google Scholar 

  89. Tabassum, N., & Khan, M. A. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae259, 108853.

  90. Tajeddin, B., Rahman, R. A., & Abdulah, L. C. (2010). The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites. International Journal of Biological Macromolecules, 47(2), 292–297.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. Tajla, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288–295.

    Article  CAS  Google Scholar 

  92. Van Soest, J. J. G., & Vliegenthart, J. F. G. (1997). Crystallinity in starch plastics: Consequences for material properties. Trends in Biotechnology, 15(6), 208–213.

    PubMed  Article  PubMed Central  Google Scholar 

  93. Vu, H. P. N., & Lumdubwong, N. (2016). Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydrate Polymers, 154, 112–120.

    Article  CAS  Google Scholar 

  94. Wang, R. M., Wang, Y., Ma, G. P., He, Y. F., & Zhao, Y. Q. (2009). Efficiency of porous burnt-coke carrier on treatment of potato starch wastewater with an anaerobic–aerobic bioreactor. Chemical Engineering Journal, 148(1), 35–40.

    CAS  Article  Google Scholar 

  95. Wu, F. C., Lee, H. D., Machado, R. B., Dalmás, S., Coy, C. S. R., Góes, J. R. N., & Fagundes, J. J. (2004). Presentation of the total burst energy test for the evaluation of biological material with non-linear viscoelastic properties. Acta Cirúrgica Brasileira, 19(6), 609–616.

    Article  Google Scholar 

  96. Yamashita, F., Nakagawa, A., Veiga, G. F., Mali, S., & Grossmann, M. V. E. (2006). Active packaging for acerola fruits. Brazilian Journal of Food Technology, 9(2), 95–100.

    CAS  Google Scholar 

  97. Yamashita, F., Nakagawa, A., Veiga, G. F., Mali, S., & Grossmann, M. V. E. (2005). Biodegradable films for application in minimally processed fruits and vegetables. Brazilian Journal of Food Technology, 8(4), 335–343.

    CAS  Google Scholar 

  98. Young, A. H. (1984). Fractionation of starch. In: R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (2nd ed.). Academic Press.

  99. Zanela, J., Casagrande, M., Radaelli, J.C., Dias, A. P., Júnior, A. W., Malfatti, C. R. M., Yamashita, F. (2021). Active biodegradable packaging for foods containing Baccharis dracunculifolia leaf as natural antioxidant. Food and Bioprocess Technology, 2021. https://doi.org/10.1007/s11947-021-02641-y

  100. Zhao, Y., & Saldaña, M. D. A. (2019). Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. The Journal of Supercritical Fluids, 143, 97–106.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES, Finance Code 001), Advanced Microscopy Laboratory (LMA) located at the Institute of Chemistry (UNESP) in Araraquara and Felipe Azevedo Borges for his assistance in the FTIR experiments of this manuscript.

Funding

The authors gratefully acknowledge the support of FAPESP, São Paulo Research Foundation, (Processes: 2011/17411–8, 2014/17526–8, 2017/19603–8) and the Brazilian Council for Scientific and Technological Development (Process: 470261/2012–9).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Giovana Sant’Ana Pegorin or Rondinelli Donizetti Herculano.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romeira, K.M., Abdalla, G., Gonçalves, R.P. et al. Residual Starch Packaging Derived from Potato Washing Slurries to Preserve Fruits. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02694-z

Download citation

Keywords

  • Polysaccharides
  • Potato
  • Biodegradable
  • Packaging
  • Preservation
  • Fruits