Skip to main content

Optimization of Enzymatic Hydrolysis for Preparing Cassava Leaf Hydrolysate with Antioxidant Activity

Abstract

Introduction

Cassava leaves are the agro-industrial by-product considered to be one of the most vegetable resource protein-richis.

Methods

This study aimed to optimize the enzymatic hydrolysis of CL proteins using Alcalase 2.4 L and studied the antioxidant properties of the hydrolysate. Effects of pH (7.0–10), temperature (40–65 °C), and enzyme/substrate (E/S) ratio (0.015–0.1 EU/ g protein) on the efficiency of protein extraction (E) (%), protein content (P) (%), and antioxidant activity (TEAC) (µmol TE/g) of the CL hydrolysate (CLH) were conducted. The models obtained were optimized through response surface methodology to maximize the value of P, E, and TEAC, respectively. Degree of hydrolysis, antioxidant activity (TEAC, ORAC, and FRAP), total phenol content (FT), and total protein content of CLH obtained under the optimal condition were measured. Amino acid composition of CLH with higher antioxidant activity was determined. CLH was fractionated by ultrafiltration into four fractions, whose antioxidant activities were then assessed in rat aortic vascular smooth muscle A7r5 cells. The fraction with the greatest activity was further fractionated based on hydrophobicity.

Results

The results showed that response variables depended on pH, E/S, and time used in the hydrolysis reaction. The fractionation process enriched antioxidant peptides, as reflected in the enhanced antioxidant activity of fractions in VSMCs. The antioxidant capacity of CLH or its derived fractions, as determined by chemical assays, corresponded with their cellular antioxidant capacity in VSMCs.

Conclusions

Our study shows the potential of cassava leaf as a source of producing antioxidant peptides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Achidi, A. U., Ajayi, O. A., Maziya-Dixon, B., & Bokanga, M. (2008). The effect of processing on the nutrient content of cassava (manihot esculenta crantz) leaves. Journal of Food Processing and Preservation, 32(3), 486–502. https://doi.org/10.1111/j.1745-4549.2007.00165.x

    CAS  Article  Google Scholar 

  2. Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. UK.

  3. Alashi, A. M., et al. (2014). Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry, 146, 500–506. https://doi.org/10.1016/j.foodchem.2013.09.081

  4. Alemán, A., Giménez, B., & Montero, P. (2011). Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chemistry, 125(2), 334–341. https://doi.org/10.1016/j.foodchem.2010.08.058

    CAS  Article  Google Scholar 

  5. Ambigaipalan, P., Al-Khalifa, A. S., & Shahidi, F. (2015). Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods. https://doi.org/10.1016/j.jff.2015.01.021

    Article  Google Scholar 

  6. Anal, A. K., & Noomhorm, A. (2013). Protein hydrolysates and bioactive peptides from seafood and Crustacean waste : Their extraction , bioactive properties and industrial perspectives. In: Marine proteins and peptides: Biological activities and application, 709–735.

  7. AOAC. (2000). Official Methods of Analysis of AOAC International. Journal - Association of Official Analytical Chemists. https://doi.org/10.3109/15563657608988149

    Article  Google Scholar 

  8. Araya, H. L., & Lutz, M. R. (2003). Alimentos funcionales y saludabLES. Revista Chilena de Nutricion, 30(1), 8–14. https://doi.org/10.4067/S0717-75182003000100001

    Article  Google Scholar 

  9. Ayodeji, F. O. (2005). Nutrient composition and processing effects on cassava leaf (manihot esculenta, crantz) antinutrients. Pakistan Journal of Nutrition, 4(1), 37–42. https://doi.org/10.3923/pjn.2005.37.42

    Article  Google Scholar 

  10. Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45, 18–24. https://doi.org/10.1016/j.procbio.2009.07.019

    CAS  Article  Google Scholar 

  11. Benítez, R., Ibarz, A., & Pagan, J. (2008). Hidrolizados de proteína: procesos y aplicaciones. Acta bioquímica clínica Latinoam, 42(2), 227–236. [Online]. Available: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572008000200008&lng=es&nrm=iso&tlng=es. Accessed 1 May 2016.

  12. Blagbrough, I. S., Bayoumi, S. A. L., Rowan, M. G., & Beeching, J. R. (2010). Cassava: An appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry, 71(17–18), 1940–1951. https://doi.org/10.1016/j.phytochem.2010.09.001

    CAS  Article  PubMed  Google Scholar 

  13. Bourseau, P., Vandanjon, L., Jaouen, P., Chaplain-derouiniot, M., & Massé, A. (2009). Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: Impact on peptidic populations. DES, 244(1–3), 303–320. https://doi.org/10.1016/j.desal.2008.05.026

    CAS  Article  Google Scholar 

  14. Bradbury, J. H., & Denton, I. C. (2014). Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein. Food Chemistry, 158, 417–420. https://doi.org/10.1016/j.foodchem.2014.02.132

    CAS  Article  PubMed  Google Scholar 

  15. Canabady-rochelle, L. L. S., Selmeczi, K., Collin, S., Pasc, A., & Muhr, L. (2018). SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chemistry, 239, 478–485. https://doi.org/10.1016/j.foodchem.2017.06.116

    CAS  Article  PubMed  Google Scholar 

  16. Castellanos, R., Altamirano, S., & Moretti, R. (1994). Nutritional characteristics of Cassava (Manihot esculenta Crantz) leaf protein concentrates obtained by ultrafiltration and acidic thermocoagulation. Plant Foods for Human Nutrition, 45, 357–363. [Online]. Available: http://link.springer.com/article/10.1007%2FBF01088085?LI=true#page-1.

  17. Chen, J., Liu, S., Ye, R., Cai, G., Ji, B., & Wu, Y. (2013). Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: Purification and characterization. Journal of Functional Foods, 5(4), 1684–1692. https://doi.org/10.1016/j.jff.2013.07.013

    CAS  Article  Google Scholar 

  18. Chomnawang, C., & Yongsawatdigul, J. (2013). Product protein recovery of tilapia frame by- products by pH-shift method. Journal of Aquatic Food Product Technology., 22(2), 112–120. https://doi.org/10.1080/10498850.2011.629077

    CAS  Article  Google Scholar 

  19. Cian, R. E., Vioque, J., & Drago, S. R. (2015). Structure-mechanism relationship of antioxidant and ACE I inhibitory peptides from wheat gluten hydrolysate fractionated by pH. Food Research International, 69, 216–223. https://doi.org/10.1016/j.foodres.2014.12.036

    CAS  Article  Google Scholar 

  20. da Cruz, C. Z. P., et al. (2020). Assessment of the bioactive potential of cheese whey protein hydrolysates using immobilized alcalase. Food and Bioprocess Technology, 13(12), 2120–2130. https://doi.org/10.1007/s11947-020-02552-4

    CAS  Article  Google Scholar 

  21. Da Silva, J. L., et al. (2012). Protein concentrate obtainment from leaves and aerial part cassava (Manihot esculenta Crantz). Semina-Ciencias Agrarias, 33(6), 2279–2287. https://doi.org/10.5433/1679-0359.2012v33n6p2279

  22. de Castro, R. J. S., & Sato, H. H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185–198. https://doi.org/10.1016/j.foodres.2015.05.013

    CAS  Article  PubMed  Google Scholar 

  23. Domı, H., & Parajo, J. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 41, 447–456. https://doi.org/10.1016/j.procbio.2005.07.014

    CAS  Article  Google Scholar 

  24. Elmalimadi, M. B., Jovanovi, J. R., Stefanovi, A. B., Jakoveti, S., Djurovi, S. B., & Bugarski, B. M. (2017). Controlled enzymatic hydrolysis for improved exploitation of the antioxidant potential of wheat gluten. Industrial Crops and Products, 109(September), 548–557. https://doi.org/10.1016/j.indcrop.2017.09.008

    CAS  Article  Google Scholar 

  25. Fan, H., Bhullar, K. S., & Wu, J. (2021). Spent hen muscle protein-derived ras regulating peptides shows antioxidant activity in vascular cells. Antioxidants, 10(2), 1–14. https://doi.org/10.3390/antiox10020290

    CAS  Article  Google Scholar 

  26. Fan, H., Yu, W., Liao, W., & Wu, J. (2020). Spent hen protein hydrolysate with good gastrointestinal stability and permeability in caco-2 cells shows antihypertensive activity in SHR. Foods. https://doi.org/10.3390/foods9101384.

    Article  PubMed  PubMed Central  Google Scholar 

  27. FAO. (2019). Datos agrícolas de FAOSTAT. Producción. Cultivos (Yuca). En Base de datos estadísticos de la FAO (FAOSTAT). http://faostat3.fao.org/download/Q/QC/S.

  28. Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., & Saso, L. (2005). Evaluation of the antioxidant activity of flavonoids by ‘ferric reducing antioxidant power’ assay and cyclic voltammetry. Biochimica et Biophysica Acta - General Subjects, 1721(1–3), 174–184. https://doi.org/10.1016/j.bbagen.2004.11.001

    CAS  Article  Google Scholar 

  29. Giraldo, A., Velasco, R. J., & Villada, H. S. (2008). Digestibilidad Aparente de una Harina Proveniente de Hojas de Yuca (Manihot esculenta Crantz). Información Tecnológica, 19(1), 11–18. https://doi.org/10.4067/S0718-07642008000100003

    CAS  Article  Google Scholar 

  30. Gómez, L. J., Figueroa, O. A., & Zapata, J. E. (2013). Actividad antioxidante de hidrolizados enzimáticos de plasma bovino obtenidos por efecto de alcalasa® 2.4 L. Informacion Tecnologica, 24(1), 33–42. https://doi.org/10.4067/S0718-07642013000100005

    CAS  Article  Google Scholar 

  31. Gómez, L. J., Gómez, N. A., Zapata, J. E., López-García, G., Cilla, A., & Alegría, A. (2019). In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Research International, 120, 52–61. https://doi.org/10.1016/J.FOODRES.2019.02.029

    Article  PubMed  Google Scholar 

  32. Gómez Sampedro, L. J., & Zapata Montoya, J. E. (2014). Effects of hydrolysis and digestion in vitro on the activity of bovine plasma hydrolysates as inhibitors of the angiotensin I converting enzyme. Brazilian Archives of Biology and Technology, 57(3), 386–393. https://doi.org/10.1590/S1516-89132014005000004

    CAS  Article  Google Scholar 

  33. González, E., Marina, M. L., & García, M. C. (2014). Plum (Prunus Domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. Journal of Functional Foods, 11, 428–437. https://doi.org/10.1016/j.jff.2014.10.020

    CAS  Article  Google Scholar 

  34. Guadix, A., Guadix, E. M., Páez, M. P., González, P., & Camacho, F. (2000). Procesos tecnologicos y metodos de control en la hidrolisis de proteinas. Ars Pharmaceutica, 41(1), 79–89. https://doi.org/10.4067/S0718-09342007000200003

    CAS  Article  Google Scholar 

  35. Guo, L., Hou, H., Li, B., Zhang, Z., Wang, S., & Zhao, X. (2013). Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochemistry, 48(5–6), 988–993. https://doi.org/10.1016/j.procbio.2013.04.013

    CAS  Article  Google Scholar 

  36. He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5(1), 219–227. https://doi.org/10.1016/j.jff.2012.10.008

    CAS  Article  Google Scholar 

  37. Intarasirisawat, R., Benjakul, S., Visessanguan, W., & Wu, J. (2012). Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chemistry, 135(4), 3039–3048. https://doi.org/10.1016/j.foodchem.2012.06.076

    CAS  Article  PubMed  Google Scholar 

  38. Jin, D.-X., Liu, X.-L., Zheng, X.-Q., Wang, X.-J., & He, J.-F. (2016). Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chemistry, 204, 427–436. https://doi.org/10.1016/j.foodchem.2016.02.119

    CAS  Article  PubMed  Google Scholar 

  39. Kannan, A., Hettiarachchy, N. S., Lay, J. O., & Liyanage, R. (2010). Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides, 31(9), 1629–1634. https://doi.org/10.1016/j.peptides.2010.05.018

    CAS  Article  PubMed  Google Scholar 

  40. Kesavan, R., Potunuru, U. R., Nastasijević, B., Avaneesh, T., Joksić, G., & Dixit, M. (2013). Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS One, 8(4), 1–13. https://doi.org/10.1371/journal.pone.0061393

    CAS  Article  Google Scholar 

  41. Kim, S. S., Ahn, C. B., Moon, S. W., & Je, J. Y. (2018). Purification and antioxidant activities of peptides from sea squirt (Halocynthia roretzi) protein hydrolysates using pepsin hydrolysis. Food Bioscience, 25(August), 128–133. https://doi.org/10.1016/j.fbio.2018.08.010

    CAS  Article  Google Scholar 

  42. Kimatu, B. M., et al. (2017). Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chemistry, 230, 58–67. https://doi.org/10.1016/j.foodchem.2017.03.030

    CAS  Article  PubMed  Google Scholar 

  43. Kou, X., Gao, J., Xue, Z., Zhang, Z., Wang, H., & Wang, X. (2013). Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT - Food Sci. Technol., 50(2), 591–598. https://doi.org/10.1016/j.lwt.2012.08.002

    CAS  Article  Google Scholar 

  44. Latif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/j.tifs.2015.04.006

    CAS  Article  Google Scholar 

  45. León, E., Jiménez, C., & Davila, G. (2015). Péptidos Bioactivos de Fuentes Vegetales: Un nuevo ingrediente para alimentos funcionales. In: Tendencias de innovación en la ingeniería de alimentos, Ramírez-Ortiz, M. E. (Ed). OmniaScience, pp. 37–71

  46. Liao, W., Chakrabarti, S., Davidge, S. T., & Wu, J. (2016). Modulatory effects of egg white ovotransferrin-derived tripeptide IRW (Ile-Arg-Trp) on vascular smooth muscle cells against angiotensin II stimulation. Journal of Agriculture and Food Chemistry, 64(39), 7342–7347. https://doi.org/10.1021/acs.jafc.6b03513

    CAS  Article  Google Scholar 

  47. Lin, Q., Liao, W., Bai, J., Wu, W., & Wu, J. (2017). Soy protein-derived ACE-inhibitory peptide LSW (Leu-Ser-Trp) shows anti-inflammatory activity on vascular smooth muscle cells. Journal of Functional Foods, 34, 248–253. https://doi.org/10.1016/j.jff.2017.04.029

    CAS  Article  Google Scholar 

  48. Ma, M.-S., In, Y. B., Lee, H. G., & Yang, C.-B. (2006). Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Moench). Food Chemistry, 96(1), 36–42. https://doi.org/10.1016/j.foodchem.2005.01.052

    CAS  Article  Google Scholar 

  49. Maejima, Y., et al. (2011). Functional compounds in fermented buckwheat sprouts. Bioscience, Biotechnology, and Biochemistry, 75(9), 1708–1712. https://doi.org/10.1271/bbb.110241

    CAS  Article  PubMed  Google Scholar 

  50. Marson, G. V., et al. (2019). Proteolytic enzymes positively modulated the physicochemical and antioxidant properties of spent yeast protein hydrolysates. Process Biochemistry. https://doi.org/10.1016/j.procbio.2019.11.030

  51. McClean, S., Beggs, L. B., & Welch, R. W. (2014). Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues. Food Chemistry, 146, 443–447. https://doi.org/10.1016/j.foodchem.2013.09.094

    CAS  Article  PubMed  Google Scholar 

  52. Morales, J. A., & Figueroa, O. A. (2017). Optimización de Hidrólisis Enzimática de la Fracción Globular de Sangre Bovina por Metodología de Superficie Respuesta y Evaluación de sus Propiedades Antioxidantes Optimization of Enzymatic Hydrolysis of Bovine Blood Cell Fraction by Response Surface Met. Informacion Tecnologica., 28(2), 75–86. https://doi.org/10.4067/S0718-07642017000200009

    Article  Google Scholar 

  53. Ng, K. L., Ayob, M. K., Said, M., Osman, M. A., & Ismail, A. (2013). Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity. Industrial Crops and Products, 43(1), 725–731. https://doi.org/10.1016/j.indcrop.2012.08.017

    CAS  Article  Google Scholar 

  54. Nguyen, T. H. L., Le, D. N., Wilhelmus, M., Verstegen, A., & Hendriks, W. H. (2012). Pig performance increases with the addition of DL-methionine and L-lysine to ensiled cassava leaf protein diets. Tropical Animal Health and Production, 44(1), 165–172. https://doi.org/10.1007/s11250-011-9904-3

    Article  Google Scholar 

  55. Noman, A., et al. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon ( Acipenser sinensis ) by using papain enzyme. Process Biochemistry, 67, 19–28. https://doi.org/10.1016/j.procbio.2018.01.009

    CAS  Article  Google Scholar 

  56. Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. Lwt, 97(January), 269–278. https://doi.org/10.1016/j.lwt.2018.07.003

    CAS  Article  Google Scholar 

  57. Oludare, F. A. (2006). Protein replacement value of cassava (Manihot esculenta, Crantz) leaf protein concentrate (CLPC): Effects on egg quality, biochemical and hematological indices in laying birds. The Journal of Food, Agriculture and Environment, 4(2), 54–59.

    CAS  Google Scholar 

  58. Opheim, M., Šližytė, R., Sterten, H., Provan, F., Larssen, E., & Kjos. . (2015). Hydrolysis of atlantic salmon (Salmo salar) rest raw materials—Effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates. Process Biochemistry, 50(8), 1247–1257. https://doi.org/10.1016/j.procbio.2015.04.017

    CAS  Article  Google Scholar 

  59. Ortiz-Martinez, M., Winkler, R., & Garca-Lara, S. (2014). Preventive and therapeutic potential of peptides from cereals against cancer. The Journal of Proteomics, 111, 165–183. https://doi.org/10.1016/j.jprot.2014.03.044

    CAS  Article  PubMed  Google Scholar 

  60. Pérez-gálvez, R., Almécija, M. C., Espejo, F. J., Guadix, E. M., & Guadix, A. (2011). Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein. Biochemical Engineering Journal, 53, 305–310. https://doi.org/10.1016/j.bej.2010.12.004

    CAS  Article  Google Scholar 

  61. Picot, L., et al. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.4020.

    Article  PubMed  Google Scholar 

  62. Popoola, J. O. (2019). Proximate analysis and SDS-PAGE protein profiling of cassava leaves: Utilization as leafy vegetable in Nigeria. MOJ Ecol. Environ. Sci., 4(1), 1–5. https://doi.org/10.15406/mojes.2019.04.00125

  63. Prieto, C. A., Guadix, E. M., & Guadix, A. (2008). Influence of temperature on protein hydrolysis in a cyclic batch enzyme membrane reactor. Biochemical Engineering Journal, 42, 217–223. https://doi.org/10.1016/j.bej.2008.06.018

    CAS  Article  Google Scholar 

  64. Ranamukhaarachchi, S., Meissner, L., & Moresoli, C. (2013). Production of antioxidant soy protein hydrolysates by sequential ultrafiltration and nanofiltration. J. Memb. Sci., 429, 81–87. https://doi.org/10.1016/j.memsci.2012.10.040

    CAS  Article  Google Scholar 

  65. Ravindran, G. (1988). Changes in the nutritional composition of cassava (Manihot esculenta Crantz) leaves during maturity. Food Chemistry, 27(4), 299–309. https://doi.org/10.1016/0308-8146(88)90014-3

    CAS  Article  Google Scholar 

  66. Roslan, J., Mazlina, S., Kamal, M., & Abdullah, N. (2014). Optimization of enzymatic hydrolysis of tilapia muscle ( Oreochromis niloticus ) using response surface methodology ( RSM ). Sains Malaysiana, 43(11), 1715–1723.

    Google Scholar 

  67. Saidi, S., Deratani, A., Belleville, M., & Ben Amar, R. (2014). Laboratory of materials science and environment, Faculty of Science of SFAX, Route de la. FRIN. https://doi.org/10.1016/j.foodres.2014.04.026.

  68. Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods, 3(4), 229–254. https://doi.org/10.1016/j.jff.2011.05.006

    CAS  Article  Google Scholar 

  69. Shi, D., He, Z., & Qi, W. (2005). Lumping kinetic study on the process of tryptic hydrolysis of bovine serum albumin. Process Biochemistry, 40, 1943–1949. https://doi.org/10.1016/j.procbio.2004.07.009

    CAS  Article  Google Scholar 

  70. Sierra, L., Fan, H., Zapata, J., & Wu, J. (2021). Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. Lwt. https://doi.org/10.1016/j.lwt.2021.111631

    Article  Google Scholar 

  71. Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products : Isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10–26. https://doi.org/10.1016/j.jff.2015.11.007

    CAS  Article  Google Scholar 

  72. Singh, T. P., Siddiqi, R. A., & Sogi, D. S. (2018). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. Lwt, 99, 77–83. https://doi.org/10.1016/j.lwt.2018.09.014

    CAS  Article  Google Scholar 

  73. Tang, X., He, Z., Dai, Y., Xiong, Y. L., Xie, M., & Chen, J. (2010). Peptide fractionation and free radical scavenging activity of zein hydrolysate. Journal of Agriculture and Food Chemistry, 58(1), 587–593. https://doi.org/10.1021/jf9028656

    CAS  Article  Google Scholar 

  74. Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2019). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Lwt, 117(July), 2020. https://doi.org/10.1016/j.lwt.2019.108616

    CAS  Article  Google Scholar 

  75. Urbizo-Reyes, U., Martin-González, M. F. S., Garcia-Bravo, J., López Malo Vigil, A., & Liceaga, A. M. (2019). Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food hydrocolloids, 97, 105187. https://doi.org/10.1016/j.foodhyd.2019.105187

    CAS  Article  Google Scholar 

  76. Wang, J., Liao, W., Nimalaratne, C., Chakrabarti, S., & Wu, J. (2018). Purification and characterization of antioxidant peptides from cooked eggs using a dynamic in vitro gastrointestinal model in vascular smooth muscle A7r5 cells. NPJ Science of Food, 2(1), 1–7. https://doi.org/10.1038/s41538-018-0015-7

    Article  Google Scholar 

  77. Wang, X., et al. (2020). Regulatory effects of a pea-derived peptide Leu-Arg-Trp (LRW) on dysfunction of rat aortic vascular smooth muscle cells against angiotensin II stimulation. Journal of Agriculture and Food Chemistry, 68(13), 3947–3953. https://doi.org/10.1021/acs.jafc.0c00028

    CAS  Article  Google Scholar 

  78. Williams, N. J., Gan, W., Reibenspies, J. H., & Hancock, R. D. (2009). Possible steric control of the relative strength of chelation enhanced fluorescence for zinc ( II ) compared to cadmium ( II ): Metal ion complexing properties of Tris (2-quinolylmethyl ) amine, a Crystallographic, UV - Visible, and Fluorometric Study. Inorganic Chemistry, 48(4), 1407–1415. https://doi.org/10.1021/ic801403s

    CAS  Article  PubMed  Google Scholar 

  79. Wiriyaphan, C., Chitsomboon, B., & Yongsawadigul, J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry, 132(1), 104–111. https://doi.org/10.1016/j.foodchem.2011.10.040

    CAS  Article  PubMed  Google Scholar 

  80. Wu, Q., Du, J., Jia, J., & Kuang, C. (2016). Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study. Food Chemistry, 199, 140–149. https://doi.org/10.1016/j.foodchem.2015.12.012

    CAS  Article  PubMed  Google Scholar 

  81. Wu, W., Li, B., Hou, H., Zhang, H., & Zhao, X. (2017). Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. Journal of Functional Foods, 35, 418–427. https://doi.org/10.1016/j.jff.2017.06.013

    CAS  Article  Google Scholar 

  82. Xia, Y., Bamdad, F., Gänzle, M., & Chen, L. (2012). Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chemistry, 134(3), 1509–1518. https://doi.org/10.1016/j.foodchem.2012.03.063

    CAS  Article  PubMed  Google Scholar 

  83. Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., & Yao, H. (2010). Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chemistry, 119(1), 226–234. https://doi.org/10.1016/j.foodchem.2009.06.015

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors of this work would like to thank Universidad de Antioquia and University of Alberta for making their facilities available for this project. Also, University of Alberta supplied equipment and materials.

Funding

The research was supported by COLCIENCIAS through the credit-scholarship of call 727 and SAPIENCIA, which are public entities from Colombia.

Author information

Affiliations

Authors

Contributions

SL, HF, ZJ, and JW generated the concept of the work; SL performed research work, analyzed and interpreted the data, and drafted the original manuscript; HF interpreted the data and edited the manuscript; ZJ and JW acquired funding, discussed the data, supervised the work, reviewed and edited the manuscript.

Corresponding authors

Correspondence to José E. Zapata or Jianping Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suarez, L.M., Fan, H., Zapata, J.E. et al. Optimization of Enzymatic Hydrolysis for Preparing Cassava Leaf Hydrolysate with Antioxidant Activity. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02693-0

Download citation

Keywords

  • Antioxidant activity
  • Enzymatic hydrolysis
  • Cassava leaves
  • Reactive oxygen species