Skip to main content

Ultrasound-Assisted Emulsification of Roasted Coffee Oil in Complex Coacervates and Real-time Coffee Aroma Release by PTR-ToF–MS

Abstract

Roasted coffee oil (RCO) is rich in volatile organic compounds (VOCs), but the VOCs’ volatility and the presence of unsaturated fatty acids make RCO unstable. The microencapsulation process can extend RCO properties by transforming the liquid RCO into stable powders for further application in coffee brews to better result in-cup. In this work, a central composite rotational design was used to study the effect of the emulsification process and discuss the effect of added microcapsules to instant coffees on the time-resolved release of VOCs upon reconstitutions. Capsules were produced by complex coacervation loaded with RCO, and ultrasound-assisted (US) emulsification was used to obtain stable coffee oil–loaded emulsions. VOC release was monitored by proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF–MS). High encapsulation efficiency (EE) (> 80%) was obtained even at a high load (100%) of RCO. EE was only affected by US power while particle mean size (D43) was strongly affected by US power and the RCO concentration. The presence of microcapsules affected the VOC release from the moment of reconstitution. The microcapsules accelerated the VOC release in soluble coffee, while in instant cappuccino, an opposite effect was observed. A zero-order model described well the mechanism of VOC release during the first 300 s. The diffusional exponent values of the Korsmeyer–Peppas equation explained a zero-order transport during the first seconds of release (burst effect) and a non-Fickian release mechanism when the release slowed down. Such findings shed new light on the development of instant coffees in order to improve their sensorial properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Alvim, I. D., & Grosso, C. R. F. (2010). Microparticles obtained by complex coacervation: Influence of the type of reticulation and the drying process on the release of the core material. Ciência e Tecnologia De Alimentos, 30(4), 1069–1076. https://doi.org/10.1590/S0101-20612010000400036

    Article  Google Scholar 

  2. Böger, B. R., Mori, A. L. B., Viegas, M. C., & Benassi, M. T. (2021). Quality attributes of roasted Arabica coffee oil extracted by pressing: Composition, antioxidant activity, sun protection factor and other physical and chemical parameters. Grasas y Aceites, 72(1), e394. https://doi.org/10.3989/gya.1144192

    Article  Google Scholar 

  3. Buffo, R. A., & Cardelli-Freire, C. (2004). Coffee flavour: An overview. Flavour and Fragrance Journal, 19(2), 99–104. https://doi.org/10.1002/ffj.1325

    CAS  Article  Google Scholar 

  4. Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003

  5. Carmo, C. S., Pais, R., Simplício, A. L., Mateus, M., & Duarte, C. M. M. (2017). Improvement of aroma and shelf-life on non-alcoholic beverages through cyclodextrins-limonene inclusion complexes. Food and Bioprocess Technology, 10, 1297–1309. https://doi.org/10.1007/s11947-017-1897-0

    CAS  Article  Google Scholar 

  6. Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

    CAS  Article  Google Scholar 

  7. Charles, M., Romano, A., Yener, S., Barnabà, M., Navarini, L., Märk, T. D., Biasioli, F., & Gasperi, F. (2015). Understanding flavour perception of espresso coffee by the combination of a dynamic sensory method and in-vivo nosespace analysis. Food Research International, 69, 9–20. https://doi.org/10.1016/j.foodres.2014.11.036

    CAS  Article  Google Scholar 

  8. Comunian, T. A., Thomazini, M., Alves, A. J. G., Junior, F. E. M., Balieiro, J. C. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373–379. https://doi.org/10.1016/j.foodres.2013.03.028

    CAS  Article  Google Scholar 

  9. Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104(3), 455–460. https://doi.org/10.1016/j.jfoodeng.2011.01.011

    CAS  Article  Google Scholar 

  10. Eghbal, N., & Choudhary, R. (2018). Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT - Food Science and Technology, 90, 254–264. https://doi.org/10.1016/j.lwt.2017.12.036

    CAS  Article  Google Scholar 

  11. Esfahani, R., Jafari, S. M., Jafarpour, A., & Dehnad, D. (2019). Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocolloids, 90, 291–298. https://doi.org/10.1016/j.foodhyd.2018.12.044

    CAS  Article  Google Scholar 

  12. Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424. https://doi.org/10.1016/j.fbp.2011.12.002

    CAS  Article  Google Scholar 

  13. Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, R., & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, 52(2), 473–482. https://doi.org/10.1016/j.foodres.2013.01.020

    CAS  Article  Google Scholar 

  14. Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56. https://doi.org/10.1016/j.carbpol.2013.02.031

    CAS  Article  PubMed  Google Scholar 

  15. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202. https://doi.org/10.1016/j.foodhyd.2007.09.006

    CAS  Article  Google Scholar 

  16. Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2015). Microencapsulation by complex coacervation using whey protein isolates and gum acacia: An approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, 8, 1635–1644. https://doi.org/10.1007/s11947-015-1521-0

    CAS  Article  Google Scholar 

  17. Kaltsa, O., Gatsi, I., Yanniotis, S., Mandala, I. (2014). Influence of ultrasonication parameters on physical characteristics of olive oil model emulsions containing xantan. Food and Bioprocess Technology, 7, 2038–2049. https://doi.org/10.1007/s11947-014-1266-1

  18. López, J. A. S., Wellinger, M., Gloess, A. N., Zimmermann, R., & Yeretzian, C. (2016). Extraction kinetics of coffee aroma compounds using a semi-automatic machine: On-line analysis by PTR-ToF-MS. International Journal of Mass Spectrometry, 401, 22–30. https://doi.org/10.1016/j.ijms.2016.02.015

    CAS  Article  Google Scholar 

  19. Lubes, G., & Goodarzi, M. (2017). Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.6b00698

    Article  PubMed  Google Scholar 

  20. Lv, Y., Zhang, X., Abbas, S., Karangwa, E., Lemetter, C. Y. G., & Zuidam, F. M. (2012). Simplified optimization for microcapsule preparation by complex coacervation based on the correlation between coacervates and the corresponding microcapsule. Journal of Food Engineering, 111(2), 225–233. https://doi.org/10.1016/j.jfoodeng.2012.02.030

    CAS  Article  Google Scholar 

  21. Maderuelo, C., Zarzuelo, A., & Lanao, J. M. (2011). Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of Controlled Release, 154(1), 2–19. https://doi.org/10.1016/j.jconrel.2011.04.002

    CAS  Article  PubMed  Google Scholar 

  22. McClements, D. J. (2016). Emulsion stability. In D. J. McClements (Ed.), Food emulsions: Principle, practices, and techniques (3rd ed., pp. 289–382). CRC Press LLC.

  23. Müller, M., Mikoviny, T., Jud, W., D’Anna, B., & Wisthaler, A. (2013). A new software tool for the analysis of high resolution PTR-TOF mass spectra. Chemometrics and Intelligent Laboratory Systems, 127, 158–165. https://doi.org/10.1016/j.chemolab.2013.06.011

    CAS  Article  Google Scholar 

  24. Nazarzadeh, E., & Sajjadi, S. (2013). Thermal effects in nanoemulsification by ultrasound. Industrial and Engineering Chemistry Research, 52(28), 9683–9689. https://doi.org/10.1021/ie4003014

    CAS  Article  Google Scholar 

  25. Peppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75–81. https://doi.org/10.1016/j.jconrel.2014.06.041

    CAS  Article  PubMed  Google Scholar 

  26. Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2019). Spray drying encapsulation of eldeberry extract and evaluating the release and stability of phenolic compounds in encapsulated powders. Food and Bioprocess Technology, 12, 1381–1394. https://doi.org/10.1007/s11947-019-02304-z

    CAS  Article  Google Scholar 

  27. Roberts, D. D., Pollien, P., Antille, N., Lindinger, C., & Yeretzian, C. (2003). Comparison of nosespace, headspace, and sensory intensity ratings for the evaluation of flavor absorption by fat. Journal of Agricultural and Food Chemistry, 51, 3636–3642.

    CAS  Article  Google Scholar 

  28. Rocha-Selmi, G. A., Favaro-Trindade, C. S., & Grosso, C. R. F. (2013). Morphology, stability, and application of lycopene microcapsules produced by complex coacervation. Journal of Chemistry, 2013, 1–7. https://doi.org/10.1155/2013/982603

    CAS  Article  Google Scholar 

  29. Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Tanver Rahman, M. R., & Van Vuong, Q. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 86, 230–251. https://doi.org/10.1016/j.tifs.2019.02.030

    CAS  Article  Google Scholar 

  30. Sanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the emulsion composition on the physical properties and oxidative stability of sacha inchi (Plukenetia volubilis L.) oil microcapsules produced by spray drying. Food Bioprocess Technology, 10, 1354–1366. https://doi.org/10.1007/s11947-017-1906-3

    CAS  Article  Google Scholar 

  31. Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48(2–3), 139–157. https://doi.org/10.1016/S0169-409X(01)00112-0

    CAS  Article  PubMed  Google Scholar 

  32. Silva, E. K., Gomes, M. T. M. S., Hubinger, M. D., Cunha, R. L., & Meireles, M. A. A. (2015). Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 47, 1–13. https://doi.org/10.1016/j.foodhyd.2015.01.001

    CAS  Article  Google Scholar 

  33. Soares, B. S., Carvalho, C. W. P., & Garcia-Rojas, E. E. (2021). Microencapsulation of sacha inchi oil by complex coacervates using ovalbumin-tannic acid and pectin as wall materials. Food Bioprocess Technology, 14, 817–830. https://doi.org/10.1007/s11947-021-02594-2

    CAS  Article  Google Scholar 

  34. Soukoulis, C., Cappellin, L., Aprea, E., Costa, F., Viola, R., Märk, T. D., Gasperi, F., & Biasioli, F. (2013). PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: The case study of apple ripening. Food and Bioprocess Technology, 6, 2831–2843. https://doi.org/10.1007/s11947-012-0930-6

    CAS  Article  Google Scholar 

  35. Soukoulis, C., Biasioli, F., Aprea, E., Schuhfried, E., Cappellin, L., Märk, T. D., & Gasperi, F. (2012). PTR-ToF-MS analysis for influence of milk base supplementation on texture and headspace concentration of endogenous volatile compounds in yogurt. Food and Bioprocess Technology, 5(6), 2085–2097. https://doi.org/10.1007/s11947-010-0487-1

    CAS  Article  Google Scholar 

  36. Sunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315–325. https://doi.org/10.1016/j.foodres.2014.02.030

    CAS  Article  Google Scholar 

  37. Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144

    CAS  Article  PubMed  Google Scholar 

  38. Walton, D. E., & Mumford, C. J. (1999). Spray dried products-Characterization of particle morphology. Institution of Chemical Engineers, 77, 21–38.

    CAS  Article  Google Scholar 

  39. Zanin, R. C., Smrke, S., Kurozawa, L. E., Yamashita, F., & Yeretzian, C. (2020). Novel experimental approach to study aroma release upon reconstitution of instant coffee products. Food Chemistry, 317, 126455. https://doi.org/10.1016/j.foodchem.2020.126455

    CAS  Article  PubMed  Google Scholar 

  40. Zanin, R. C., Viegas, M. C., Smrke, S., Yeretzian, C., Kurozawa, L. E., & Yamashita, F. (2021a). The role of ultrasound-assisted emulsification of roasted coffee oil on aroma profile in spray-dried microparticles and its dynamic release by PTR-ToF–MS. European Food Research and Technology. https://doi.org/10.1007/s00217-020-03670-1

    Article  Google Scholar 

  41. Zanin, R. C., Smrke, S., Kurozawa, L. E., Yamashita, F., & Yeretzian, C. (2021b). Modulation of aroma release of instant coffees through microparticles of roasted coffee oil. Food Chemistry, 341, 128193. https://doi.org/10.1016/j.foodchem.2020.128193

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Café Iguaçu, Gelita, and Nexira for providing the samples.

Funding

The authors were financially supported by the Zürich University of Applied Sciences and the Brazilian government (CAPES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Campos Zanin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zanin, R.C., Smrke, S., Yeretzian, C. et al. Ultrasound-Assisted Emulsification of Roasted Coffee Oil in Complex Coacervates and Real-time Coffee Aroma Release by PTR-ToF–MS. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02683-2

Download citation

Keywords

  • Soluble coffee
  • Instant cappuccino
  • Microencapsulation
  • Real-time online analysis
  • Central composite rotational design
  • Kinetic release