Development of Pea Protein Films with Haskap (Lonicera caerulea) Leaf Extracts from Aqueous Two-phase Systems

Abstract

Pea protein films were developed using haskap (Lonicera caerulea) leaf extracts obtained from aqueous two-phase extraction (ATPE) and aqueous two-phase flotation (ATPF), where the components from the aqueous two-phase systems were incorporated directly into the films. The films were formulated with components that were GRAS (Generally Recognized as Safe): either pea protein isolate (PPI) or pea protein concentrate (PPC), glycerol as plasticizer, carboxylic acids (citric acid or malic acid) as cross-linkers, and the haskap leaf extracts comprising of bioactive compounds, ethanol, salt (sodium phosphate or ammonium sulphate), and water. Films were produced by the bench casting method, and they were assessed in terms of physical, mechanical, optical, water vapour permeability, thermal, migration, and antioxidant properties. Some formulations with the haskap leaf extracts demonstrated better water vapour permeability and flexibility with the presence of salt. The films also exhibited thermal stability as the melting temperatures were higher than 150 °C and ultraviolet absorption properties that would protect products from ultraviolet degradation. Additionally, the films allowed the migration of bioactive compounds into alcoholic and fatty food simulants, which suggests that they could extend the shelf life of perishable food and increase the antioxidant properties of the packaged products. This work also shows that post-extraction steps such as alcohol evaporation and salt precipitation are not necessary with aqueous two-phase systems and could therefore reduce associated processing costs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Acquah, C., Zhang, Y., Dubé, M. A., & Udenigwe, C. C. (2020). Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Current Research in Food Science, 2, 61–69. https://doi.org/10.1016/j.crfs.2019.11.008

    Article  PubMed  Google Scholar 

  2. Agboola, S. O., Mofolasayo, O. A., Watts, B. M., & Aluko, R. E. (2010). Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International, 43(2), 582–588. https://doi.org/10.1016/j.foodres.2009.07.013

  3. ASTM International. (2016). ASTM E96/E96M-16 Standard Test Methods for Water Vapor Transmission of Materials. https://doi.org/10.1520/E0096_E0096M-16

  4. ASTM International. (2018). ASTM D882–18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://doi.org/10.1520/D0882-18

  5. Aziz, S. G.-G., & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11(8), 1552–1565. https://doi.org/10.1007/s11947-018-2121-6

  6. Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391–396. https://doi.org/10.1016/j.foodres.2010.10.001

    CAS  Article  Google Scholar 

  7. Banerjee, R., & Chen, H. (1995). Functional Properties of Edible Films Using Whey Protein Concentrate. Journal of Dairy Science, 78(8), 1673–1683. https://doi.org/10.3168/jds.S0022-0302(95)76792-3

    CAS  Article  Google Scholar 

  8. Banker, G. S., Gore, A. Y., & Swarbrick, J. (1966). Water vapour transmission properties of free polymer films. Journal of Pharmacy and Pharmacology, 18(7), 457–466. https://doi.org/10.1111/j.2042-7158.1966.tb07906.x

    CAS  Article  PubMed  Google Scholar 

  9. Blossey, R. (2003). Self-cleaning surfaces — virtual realities. Nature Materials, 2(5), 301–306. https://doi.org/10.1038/nmat856

    CAS  Article  PubMed  Google Scholar 

  10. Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17–25. https://doi.org/10.1016/j.fbio.2016.07.003

    CAS  Article  Google Scholar 

  11. Bora, P. S., Brekke, C. J., & Powers, J. R. (1994). Heat induced gelation of pea (Pisum sativum) mixed globulins, vicilin and legumin. Journal of Food Science, 59(3), 594–596. https://doi.org/10.1111/j.1365-2621.1994.tb05570.x

    CAS  Article  Google Scholar 

  12. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    CAS  Article  Google Scholar 

  13. Briassoulis, D., & Giannoulis, A. (2018). Evaluation of the functionality of bio-based food packaging films. Polymer Testing, 69, 39–51. https://doi.org/10.1016/j.polymertesting.2018.05.003

    CAS  Article  Google Scholar 

  14. Calvo, M. E., Castro Smirnov, J. R., & Míguez, H. (2012). Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 50(14), 945–956. https://doi.org/10.1002/polb.23087

    CAS  Article  Google Scholar 

  15. Chahardoli, A., Jalilian, F., Memariani, Z., Farzaei, M. H., & Shokoohinia, Y. (2020). Chapter 26 - Analysis of organic acids (A. Sanches Silva, S. F. Nabavi, M. Saeedi, & S. M. B. T.-R. A. in N. P. A. Nabavi (eds.); pp. 767–823). Elsevier. https://doi.org/10.1016/B978-0-12-816455-6.00026-3

  16. Choi, W.-S., & Han, J. H. (2001). Physical and mechanical properties of pea-protein-based edible films. Journal of Food Science, 66(2), 319–322. https://doi.org/10.1111/j.1365-2621.2001.tb11339.x

    CAS  Article  Google Scholar 

  17. Choi, W. S., & Han, J. H. (2002). Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. Journal of Food Science, 67(4), 1399–1406. https://doi.org/10.1111/j.1365-2621.2002.tb10297.x

    CAS  Article  Google Scholar 

  18. Chong, K. Y., & Brooks, M.S.-L. (2021). Effects of recycling on the aqueous two-phase extraction of bioactives from haskap leaves. Separation and Purification Technology, 255, 117755. https://doi.org/10.1016/j.seppur.2020.117755

    CAS  Article  Google Scholar 

  19. Chong, K. Y., Stefanova, R., Zhang, J., & Brooks, M.S.-L. (2020a). Aqueous two-phase extraction of bioactive compounds from haskap leaves (Lonicera caerulea): Comparison of salt/ethanol and sugar/propanol systems. Separation and Purification Technology, 252, 117399. https://doi.org/10.1016/j.seppur.2020.117399

    CAS  Article  Google Scholar 

  20. Chong, K. Y., Stefanova, R., Zhang, J., & Brooks, M. S. L. (2020b). Extraction of bioactive compounds from haskap leaves (Lonicera caerulea) using salt/ethanol aqueous two-phase flotation. Food and Bioprocess Technology, 13, 2131–2144. https://doi.org/10.1007/s11947-020-02553-3

    CAS  Article  Google Scholar 

  21. Cicco, N., Lanorte, M. T., Paraggio, M., Viggiano, M., & Lattanzio, V. (2009). A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91(1), 107–110. https://doi.org/10.1016/j.microc.2008.08.011

    CAS  Article  Google Scholar 

  22. Dawson, J. K. (2017). Concentration and content of secondary metabolites in fruit and leaves of Haskap (Lonicera caerulea L.). https://harvest.usask.ca/handle/10388/7819

  23. de Moraes Crizel, T., de Oliveira Rios, A., Alves, D., & V., Bandarra, N., Moldão-Martins, M., & Hickmann Flôres, S. (2018). Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology, 11(3), 536–550. https://doi.org/10.1007/s11947-017-2030-0

    CAS  Article  Google Scholar 

  24. Eswaranandam, S., Hettiarachchy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. Journal of Food Science, 69(3), FMS79–FMS84. https://doi.org/10.1111/j.1365-2621.2004.tb13375.x

  25. European Commission. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union, 12, 1–89. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010

  26. Fernandes de Oliveira, A. M., Sousa Pinheiro, L., Souto Pereira, C. K., Neves Matias, W., Albuquerque Gomes, R., Souza Chaves, O., Vanderlei de Souza, M. D. F., Nóbrega de Almeida, R., & Simões de Assis, T. (2012). Total phenolic content and antioxidant activity of some Malvaceae family species. Antioxidants, 1(1), 33–43. https://doi.org/10.3390/antiox1010033

    CAS  Article  PubMed  Google Scholar 

  27. Feyzi, S., Milani, E., & Golimovahhed, Q. A. (2018). Grass Pea (Lathyrus sativus L.) Protein isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74, 187–196. https://doi.org/10.1016/j.foodhyd.2017.07.031

    CAS  Article  Google Scholar 

  28. Frohberg, P., Pietzsch, M., & Ulrich, J. (2010). Effect of crystalline substances in biodegradable films. Chemical Engineering Research and Design, 88(9), 1148–1152. https://doi.org/10.1016/j.cherd.2010.01.037

    CAS  Article  Google Scholar 

  29. Galani, J. H. Y., Patel, J. S., Patel, N. J., & Talati, J. G. (2017). Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. In Antioxidants (Vol. 6, Issue 3). https://doi.org/10.3390/antiox6030059

  30. Goudarzi, V., Shahabi-Ghahfarrokhi, I., & Babaei-Ghazvini, A. (2017). Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. International Journal of Biological Macromolecules, 95, 306–313. https://doi.org/10.1016/j.ijbiomac.2016.11.065

    CAS  Article  PubMed  Google Scholar 

  31. Gutiérrez, T. J., & González, G. (2016). Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food and Bioprocess Technology, 9(11), 1812–1824. https://doi.org/10.1007/s11947-016-1765-3

    CAS  Article  Google Scholar 

  32. Halden, R. U. (2010). Plastics and health risks. Annual Review of Public Health, 31(1), 179–194. https://doi.org/10.1146/annurev.publhealth.012809.103714

    Article  PubMed  Google Scholar 

  33. Han, Y., Yu, M., & Wang, L. (2018). Preparation and characterization of antioxidant soy protein isolate films incorporating licorice residue extract. Food Hydrocolloids, 75, 13–21. https://doi.org/10.1016/j.foodhyd.2017.09.020

    CAS  Article  Google Scholar 

  34. Hatti-Kaul, R. (2000). Aqueous two-phase systems: methods and protocols (R. Hatti-Kaul (ed.)). Humana Press. https://doi.org/10.1385/1592590284

  35. Hoffmann, E. M., Breitenbach, A., & Breitkreutz, J. (2011). Advances in orodispersible films for drug delivery. Expert Opinion on Drug Delivery, 8(3), 299–316. https://doi.org/10.1517/17425247.2011.553217

    CAS  Article  PubMed  Google Scholar 

  36. Hoque, M. S., Benjakul, S., & Prodpran, T. (2010). Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering, 96(1), 66–73. https://doi.org/10.1016/j.jfoodeng.2009.06.046

  37. Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. A. B., Hussain, H. I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): An overview and advances in its applications. Biological Procedures Online, 18, 18. https://doi.org/10.1186/s12575-016-0048-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT, 134, 110102. https://doi.org/10.1016/j.lwt.2020.110102

    CAS  Article  Google Scholar 

  39. Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food and Bioprocess Technology, 5(6), 2058–2076. https://doi.org/10.1007/s11947-012-0835-4

    CAS  Article  Google Scholar 

  40. Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19. https://doi.org/10.1016/j.foodhyd.2013.08.030

    CAS  Article  Google Scholar 

  41. Kanmani, P., & Rhim, J.-W. (2014). Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. International Journal of Biological Macromolecules, 68, 258–266. https://doi.org/10.1016/j.ijbiomac.2014.05.011

    CAS  Article  PubMed  Google Scholar 

  42. Kokoszka, S., Debeaufort, F., Lenart, A., & Voilley, A. (2010). Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal, 20(1), 53–60. https://doi.org/10.1016/j.idairyj.2009.07.008

    CAS  Article  Google Scholar 

  43. Kowalczyk, D., & Baraniak, B. (2011). Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of Food Engineering, 105(2), 295–305. https://doi.org/10.1016/j.jfoodeng.2011.02.037

    CAS  Article  Google Scholar 

  44. Kyriakopoulou, K., Pappa, A., Krokida, M., Detsi, A., & Kefalas, P. (2013). Effects of drying and extraction methods on the quality and antioxidant activity of Sea Buckthorn (Hippophae rhamnoides) berries and leaves. Drying Technology, 31(9), 1063–1076. https://doi.org/10.1080/07373937.2013.773907

    CAS  Article  Google Scholar 

  45. Lambrecht, M. A., Rombouts, I., & Delcour, J. A. (2016). Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocolloids, 57, 122–131. https://doi.org/10.1016/j.foodhyd.2016.01.018

    CAS  Article  Google Scholar 

  46. Le Dean, A., Mariette, F., Lucas, T., & Marin, M. (2001). Assessment of the state of water in reconstituted milk protein dispersions by nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). LWT - Food Science and Technology, 34(5), 299–305. https://doi.org/10.1006/fstl.2001.0765

    Article  Google Scholar 

  47. López-de-Dicastillo, C., Gómez-Estaca, J., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2012). Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chemistry, 131(4), 1376–1384. https://doi.org/10.1016/j.foodchem.2011.10.002

    CAS  Article  Google Scholar 

  48. Mahajan, P. V., Oliveira, F. A. R., & Macedo, I. (2008). Effect of temperature and humidity on the transpiration rate of the whole mushrooms. Journal of Food Engineering, 84(2), 281–288. https://doi.org/10.1016/j.jfoodeng.2007.05.021

    Article  Google Scholar 

  49. Mallegni, N., Phuong, T. V., Coltelli, M.-B., Cinelli, P., & Lazzeri, A. (2018). Poly (lactic acid)(PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials, 11(1), 148. https://doi.org/10.3390/ma11010148

    CAS  Article  PubMed Central  Google Scholar 

  50. Maryam Adilah, Z. A., Jamilah, B., & Nur Hanani, Z. A. (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 74, 207–218. https://doi.org/10.1016/j.foodhyd.2017.08.017

    CAS  Article  Google Scholar 

  51. McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903. https://doi.org/10.1111/j.1365-2621.1993.tb09387.x

    CAS  Article  Google Scholar 

  52. Medina Jaramillo, C., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150–159. https://doi.org/10.1016/j.carbpol.2016.05.025

    CAS  Article  PubMed  Google Scholar 

  53. Melini, V., & Melini, F. (2018). Strategies to extend bread and GF bread shelf-Life: From sourdough to antimicrobial active packaging and nanotechnology. Fermentation, 4(1), 9. https://doi.org/10.3390/fermentation4010009

    CAS  Article  Google Scholar 

  54. Mession, J.-L., Chihi, M. L., Sok, N., & Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243. https://doi.org/10.1016/j.foodhyd.2014.11.025

    CAS  Article  Google Scholar 

  55. Mettler Toledo. (2000). Interpreting DSC curves Part 1: Dynamic measurements.

  56. Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids, 89(October 2018), 674–681. https://doi.org/10.1016/j.foodhyd.2018.11.036

  57. Mustafa, R. A., Hamid, A. A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of Food Science, 75(1), C28–C35. https://doi.org/10.1111/j.1750-3841.2009.01401.x

    CAS  Article  PubMed  Google Scholar 

  58. Neužilová, B., Ondrák, L., Čuba, V., & Múčka, V. (2019). Ethanol as a modifier of radiation sensitivity of living cells against UV-C radiation. Radiation Protection Dosimetry, 186(2–3), 191–195. https://doi.org/10.1093/rpd/ncz200

    CAS  Article  PubMed  Google Scholar 

  59. Newsham, D. M. T., & Mendez-Lecanda, E. J. (1982). Isobaric enthalpies of vaporization of water, methanol, ethanol, propan-2-ol, and their mixtures. The Journal of Chemical Thermodynamics, 14(3), 291–301. https://doi.org/10.1016/0021-9614(82)90020-9

    CAS  Article  Google Scholar 

  60. Nikolaidis, A., & Moschakis, T. (2018). On the reversibility of ethanol-induced whey protein denaturation. Food Hydrocolloids, 84, 389–395. https://doi.org/10.1016/j.foodhyd.2018.05.051

    CAS  Article  Google Scholar 

  61. North, E. J., & Halden, R. U. (2013). Plastics and environmental health: The road ahead. Reviews on Environmental Health, 28(1), 1–8. https://doi.org/10.1515/reveh-2012-0030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Nouri, L., & Mohammadi Nafchi, A. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. International Journal of Biological Macromolecules, 66, 254–259. https://doi.org/10.1016/j.ijbiomac.2014.02.044

    CAS  Article  PubMed  Google Scholar 

  63. Oliveira, M. L. N., Malagoni, R. A., & Franco, M. R. (2013). Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol+water. Fluid Phase Equilibria, 352, 110–113. https://doi.org/10.1016/j.fluid.2013.05.014

    CAS  Article  Google Scholar 

  64. Oszmiański, J., Wojdyło, A., Gorzelany, J., & Kapusta, I. (2011). Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 59(24), 12830–12835. https://doi.org/10.1021/jf203052j

    CAS  Article  PubMed  Google Scholar 

  65. Peng, C., Chan, M. N., & Chan, C. K. (2001). The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions. Environmental Science & Technology, 35(22), 4495–4501. https://doi.org/10.1021/es0107531

    CAS  Article  Google Scholar 

  66. Phan, T. D., Debeaufort, F., Luu, D., & Voilley, A. (2005). Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973–981. https://doi.org/10.1021/jf040309s

    CAS  Article  PubMed  Google Scholar 

  67. Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110–122. https://doi.org/10.1016/j.foodhyd.2012.05.001

    CAS  Article  Google Scholar 

  68. Reinkensmeier, A., Bußler, S., Schlüter, O., Rohn, S., & Rawel, H. M. (2015). Characterization of individual proteins in pea protein isolates and air classified samples. Food Research International, 76, 160–167. https://doi.org/10.1016/j.foodres.2015.05.009

    CAS  Article  Google Scholar 

  69. Ribeiro-Santos, R., de Melo, N. R., Andrade, M., Azevedo, G., Machado, A. V., Carvalho-Costa, D., & Sanches-Silva, A. (2018). Whey protein active films incorporated with a blend of essential oils: Characterization and effectiveness. Packaging Technology and Science, 31(1), 27–40. https://doi.org/10.1002/pts.2352

    CAS  Article  Google Scholar 

  70. Rodríguez-Martínez, A. V., Sendón, R., Abad, M. J., González-Rodríguez, M. V., Barros-Velázquez, J., Aubourg, S. P., Paseiro-Losada, P., & Rodríguez-Bernaldo de Quirós, A. (2016). Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT - Food Science and Technology, 65, 630–636. https://doi.org/10.1016/j.lwt.2015.08.029

    CAS  Article  Google Scholar 

  71. Roy, F., Boye, J. I., & Simpson, B. K. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International, 43(2), 432–442. https://doi.org/10.1016/j.foodres.2009.09.002

    CAS  Article  Google Scholar 

  72. Sabaté, J., & Soret, S. (2014). Sustainability of plant-based diets: back to the future. The American Journal of Clinical Nutrition, 100(suppl_1), 476S-482S. https://doi.org/10.3945/ajcn.113.071522

  73. Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10(12), 2240–2250. https://doi.org/10.1007/s11947-017-1995-z

    CAS  Article  Google Scholar 

  74. Sängerlaub, S., Böhmer, M., & Stramm, C. (2013). Influence of stretching ratio and salt concentration on the porosity of polypropylene films containing sodium chloride particles. Journal of Applied Polymer Science, 129(3), 1238–1248. https://doi.org/10.1002/app.38793

    CAS  Article  Google Scholar 

  75. Sharma, L., Sharma, H. K., & Saini, C. S. (2018). Edible films developed from carboxylic acid cross-linked sesame protein isolate: Barrier, mechanical, thermal, crystalline and morphological properties. Journal of Food Science and Technology, 55(2), 532–539. https://doi.org/10.1007/s13197-017-2962-4

    CAS  Article  PubMed  Google Scholar 

  76. Shevkani, K., & Singh, N. (2015). Relationship between protein characteristics and film-forming properties of kidney bean, field pea and amaranth protein isolates. International Journal of Food Science and Technology, 50(4), 1033–1043. https://doi.org/10.1111/ijfs.12733

    CAS  Article  Google Scholar 

  77. Shi, W., & Dumont, M.-J. (2014). Processing and physical properties of canola protein isolate-based films. Industrial Crops and Products, 52, 269–277. https://doi.org/10.1016/j.indcrop.2013.10.037

    CAS  Article  Google Scholar 

  78. Shiku, Y., Hamaguchi, P. Y., & Tanaka, M. (2003). Effect of pH on the preparation of edible films based on fish myofibrillar proteins. Fisheries Science, 69(5), 1026–1032. https://doi.org/10.1046/j.1444-2906.2003.00722.x

    CAS  Article  Google Scholar 

  79. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299C, 152–178.

    Article  Google Scholar 

  80. Sirtori, E., Isak, I., Resta, D., Boschin, G., & Arnoldi, A. (2012). Mechanical and thermal processing effects on protein integrity and peptide fingerprint of pea protein isolate. Food Chemistry, 134(1), 113–121. https://doi.org/10.1016/j.foodchem.2012.02.073

    CAS  Article  Google Scholar 

  81. Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8), 781–785. https://doi.org/10.1016/j.foodres.2008.04.007

    CAS  Article  Google Scholar 

  82. Solano-Castillo, C., & Rito-Palomares, M. (2000). Kinetics of phase separation under different process and design parameters in aqueous two-phase systems. Journal of Chromatography B: Biomedical Sciences and Applications, 743(1), 195–201. https://doi.org/10.1016/S0378-4347(00)00060-8

    CAS  Article  PubMed  Google Scholar 

  83. Souza, M. P., Vaz, A. F. M., Silva, H. D., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015). Development and characterization of an active chitosan-based film containing quercetin. Food and Bioprocess Technology, 8(11), 2183–2191. https://doi.org/10.1007/s11947-015-1580-2

    CAS  Article  Google Scholar 

  84. Souza, V. G. L., Rodrigues, P. F., Duarte, M. P., & Fernando, A. L. (2018). Antioxidant migration studies in chitosan films incorporated with plant extracts. In Journal of Renewable Materials (Vol. 6, Issue 5). https://doi.org/10.7569/JRM.2018.634104

  85. Spikes, J. D. (1981). Photodegradation of foods and beverages. In Photochemical and photobiological reviews (pp. 39–85). Springer. https://doi.org/10.1007/978-1-4684-7003-1_2

  86. Takuno, M. (1992). Highly hygroscopic laminate. Google Patents. https://patents.google.com/patent/US5143773A/en

  87. Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N. (2018). Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT, 97, 624–631. https://doi.org/10.1016/j.lwt.2018.07.057

    CAS  Article  Google Scholar 

  88. Ustunol, Z., & Mert, B. (2004). Water solubility, mechanical, barrier, and thermal properties of cross-linked whey protein isolate-based films. Journal of Food Science, 69(3), FEP129–FEP133. https://doi.org/10.1111/j.1365-2621.2004.tb13365.x

  89. Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    CAS  Article  Google Scholar 

  90. Wang, S., Marcone, M., Barbut, S., & Lim, L.-T. (2012). The impact of anthocyanin-rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science, 77(4), C497–C505. https://doi.org/10.1111/j.1750-3841.2012.02655.x

    CAS  Article  PubMed  Google Scholar 

  91. Yang, J., Zamani, S., Liang, L., & Chen, L. (2021). Extraction methods significantly impact pea protein composition, structure and gelling properties. Food Hydrocolloids, 117, 106678. https://doi.org/10.1016/j.foodhyd.2021.106678

    CAS  Article  Google Scholar 

  92. Yuan, Y., Leng, Y., Shao, H., Huang, C., & Shan, K. (2014). Solubility of dl-malic acid in water, ethanol and in mixtures of ethanol+water. Fluid Phase Equilibria, 377, 27–32. https://doi.org/10.1016/j.fluid.2014.06.017

    CAS  Article  Google Scholar 

  93. Yue, H.-B., Cui, Y.-D., Shuttleworth, P. S., & Clark, J. H. (2012). Preparation and characterisation of bioplastics made from cottonseed protein. Green Chemistry, 14(7), 2009–2016. https://doi.org/10.1039/C2GC35509D

    CAS  Article  Google Scholar 

  94. Zhang, W., Zhu, D., Fan, H., Liu, X., Wan, Q., Wu, X., Liu, P., & Tang, J. Z. (2015). Simultaneous extraction and purification of alkaloids from Sophora flavescens Ait. by microwave-assisted aqueous two-phase extraction with ethanol/ammonia sulfate system. Separation and Purification Technology, 141, 113–123. https://doi.org/10.1016/j.seppur.2014.11.014

    CAS  Article  Google Scholar 

  95. Zhou, P., & Labuza, T. P. (2007). Effect of water content on glass transition and protein aggregation of whey protein powders during short-term storage. Food Biophysics, 2(2), 108–116. https://doi.org/10.1007/s11483-007-9037-4

    Article  Google Scholar 

  96. Zhu, L., Lu, Y., Sun, Z., Han, J., & Tan, Z. (2020). The application of an aqueous two-phase system combined with ultrasonic cell disruption extraction and HPLC in the simultaneous separation and analysis of solanine and Solanum nigrum polysaccharide from Solanum nigrum unripe fruit. Food Chemistry, 304, 125383. https://doi.org/10.1016/j.foodchem.2019.125383

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cynthia Swinimer of Lone Tree Farm and Dr. Evie Kemp of Haskapa for assisting in the leaf collection process.

Funding

This work was supported by funding from the Natural Sciences and Engineering Council of Canada (NSERC).

Author information

Affiliations

Authors

Contributions

Kar Yeen Chong: Methodology, Software, Validation, Formal analysis, Investigation, Writing—original draft and editing, Visualization. Yury Yuryev: Investigation. Abhinav Jain: Investigation. Beth Mason: Resources. Marianne Su-Ling Brooks: Conceptualization, Resources, Supervision, Project administration, Funding acquisition, Writing—editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Marianne Su-Ling Brooks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chong, K.Y., Yuryev, Y., Jain, A. et al. Development of Pea Protein Films with Haskap (Lonicera caerulea) Leaf Extracts from Aqueous Two-phase Systems. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02671-6

Download citation

Keywords

  • Aqueous two-phase system
  • Functional packaging
  • Haskap
  • Pea protein isolate
  • Pea protein concentrate
  • Phenolic compounds