Skip to main content

Advertisement

Log in

Daily Development of Nutritional Composition of Canola Sprouts Followed by Solid-state Fungal Fermentation

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sprouting is a beneficial way to increase the nutritional value of the original seeds. Besides, fungal fermentation of sprouts can further improve sprouts composition by reducing antinutritional factors and concentrating protein content. Thus, this study characterized the daily nutritional changes in canola sprouts and further evaluated the effect of fungal fermentation on 144 h sprouts under solid state fermentation conditions. Sprouting process resulted in high moisture containing sprouts (75.3%) due to water uptake by seeds. The oil content of sprouts (27.2% at 144 h) was significantly (p ≤ 0.05) reduced when compared to raw seeds (39.6%). Likewise, phytic acid, crude fiber, acid detergent fiber, and neutral detergent fibers were reduced by 49.7, 32.8, 19.7, and 16.6%, respectively, when compared to raw seeds. There were significant increases in protein and carbohydrate contents of sprouts, and glucosinolates also increased from 1.3 to 3.5 µM/g post sprouting. Fungal fermentation with Neurospora crassa resulted in the highest protein increase (32.8%). Heat-sterilization reduced total glucosinolates by 38.8%, and a further reduction (4.0%) was obtained by fermentation with Trichoderma reesei. A reduction in phytic acid content of 81.4, 45.8, and 10.2% was achieved by fermentation with N. crassa, T. reesei, and Aureobasidium pullulans, respectively. Total carbohydrates was reduced by 3.3 mg/mL post heat-sterilization, and fungal fermentation led to the further reduction of total carbohydrates, but total fibers were found to be increased post fermentation. These results highlight the enhancement of nutritional values of sprouted seeds and further fermented sprouts compared to ungerminated seeds and unfermented sprouts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • AACC Iinternational. (2010). Approved methods of analysis: In Method 44.20.01 moisture- air-oven method. AACC International, 44.20.01(11th Ed), St. Paul, MN, USA

  • Abu El Gasim, A. Y., Mohammed, M. A., & Baker, A. A. A. (2008). Effect of soaking, sprouting and cooking on chemical composition, bioavailability of minerals and in vitro protein digestibility of roselle (Hibiscus sabdariffa L.) seed. Pakistan Journal of Nutrition, 7(1), 50–56

  • Alhomodi, A. F., Zavadil, A., Berhow, M., Gibbons, W. R., & Karki, B. (2021a). Application of cocultures of fungal mycelium during solid‐state fermentation of canola meal for potential feed application. Journal of the American Oil Chemists' Society

  • Alhomodi, A. F., Zavadil, A., Berhow, M., Gibbons, W. R., & Karki, B. (2021b). Composition of canola seed sprouts fermented by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei under submerged-state fermentation. Food and Bioproducts Processing, 126, 256–264.

    Article  CAS  Google Scholar 

  • ANKOM. (2006). Acid detergent fiber and neutral detergent fiber in feeds—filter bag technique (for A2000 and A2000I). Retrieved from https://www.ankom.com/analytical-methods-support/fiber-analyzer-a2000

  • AOAC. (2006a). AOAC 973.18 (A-D) Official Methods of Analysis of AOAC International. AOAC International (18th ed.). Gaithersburg.

    Google Scholar 

  • AOAC. (2006b). AOAC 978.10 Official Methods of Analysis of AOAC International. AOAC International (18th ed.). Gaithersburg.

    Google Scholar 

  • AOCS. (2005). AOCS Official Method Ba 6a–05 Official Methods and Recommended Practices of the AOCS. The American Oil Chemists’ Society.

    Google Scholar 

  • Balasaraswathi, R., & Sadasivam, S. (1997). Changes in oil, sugars and nitrogenous components during germination of sunflower seeds, Helianthus annuus. Plant Foods for Human Nutrition, 51(1), 71–77

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, E. L., Karki, B., Zahler, J. D., Rinehart, M., & Gibbons, W. R. (2019). Submerged vs. solid‐state conversion of soybean meal into a high protein feed using Aureobasidium pullulans. Journal of the American Oil Chemists' Society

  • Barthet, V. J., & Daun, J. K. (2005). Effect of sprouting on the quality and composition of canola seed and oil. Journal of the American Oil Chemists’ Society, 82(7), 511–517

    Article  CAS  Google Scholar 

  • Barthet, V. J., & Daun, J. K. (2011). Seed morphology, composiiton, and quality (pp. 119–162). Chemistry, Production, Processing, and Utilization. AOCS PRESS

    Google Scholar 

  • Bellostas, N., Kachlicki, P., Sørensen, J. C., & Sørensen, H. (2007). Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Scientia Horticulturae, 114(4), 234–242

  • Berhow, M. A., Polat, U., Glinski, J. A., Glensk, M., Vaughn, S. F., Isbell, T., & Gardner, C. (2013). Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Industrial Crops and Products, 43, 119–125

    Article  CAS  Google Scholar 

  • Betz, J., & Fox, W. (1994). High-performance liquid chromatographic determination of glucosinolates in Brassica vegetables. In: ACS Publications

  • Bhardwaj, H. L., & Hamama, A. A. (2007). Yield and nutritional quality of canola sprouts. HortScience, 42(7), 1656–1658

    Article  Google Scholar 

  • Black, M., & Bewley, J. D. (1983). Physiology and biochemistry of seeds in relation to germination

  • Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G., & Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology, 82(5), 793–804

    Article  CAS  PubMed  Google Scholar 

  • Chung, T., Nwokolo, E., & Sim, J. (1989). Compositional and digestibility changes in sprouted barley and canola seeds. Plant Foods for Human Nutrition, 39(3), 267–278

    Article  CAS  PubMed  Google Scholar 

  • Ciska, E., Honke, J., & Kozłowska, H. (2008). Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard, red radish, white radish, and rapeseed. Journal of Agricultural and Food Chemistry, 56(19), 9087–9093

    Article  CAS  PubMed  Google Scholar 

  • Croat, J. R., Berhow, M., Karki, B., Muthukumarappan, K., & Gibbons, W. R. (2016). Conversion of canola meal into a high-protein feed additive via solid-state fungal incubation process. Journal of the American Oil Chemists’ Society, 93(4), 499–507

    Article  CAS  Google Scholar 

  • Croat, J. R., Gibbons, W. R., Berhow, M., Karki, B., & Muthukumarappan, K. (2016). Enhancing the nutritional value of canola (Brassica napus) meal using a submerged fungal incubation process. Journal of Food Research, 5(5), 1–10

    Article  CAS  Google Scholar 

  • Dawood, M., Sadak, M., Reyad, B., El-Sayed, A., & El-Gayar, S. (2013). Changes in chemical composition during germination of some canola varieties changes in oil content and fatty acid composition. Scientia Agriculturae, 2(3), 77–82

    Google Scholar 

  • Egounlety, M., & Aworh, O. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56(2–3), 249–254

  • El-Batal, A., & Karem, H. A. (2001). Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Research International, 34(8), 715–720

    Article  CAS  Google Scholar 

  • Fouad, A. A., & Rehab, F. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta scientiarum polonorum. Technologia alimentaria, 14(3)

  • Frias, J., Zieliński, H., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2005). Inositol phosphate content and trypsin inhibitor activity in ready-to-eat cruciferous sprouts. Food Chemistry, 93(2), 331–336

    Article  CAS  Google Scholar 

  • Ghavidel, R. A., & Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT-Food Science and Technology, 40(7), 1292–1299

    Article  CAS  Google Scholar 

  • Hamama, A. A., & Bhardwaj, H. L. (2011). Characterization of total and individual sterols in canola sprouts. Journal of the American Oil Chemists’ Society, 88(3), 361–366

    Article  CAS  Google Scholar 

  • Holst, D. O. (1973). Holst filtration apparatus for Van Soest detergent fiber analyses. Journal of the Association of Official Analytical Chemists, 56(6), 1352–1356

    CAS  Google Scholar 

  • Horwitz, W., & Latimer, G. (2006). AOAC official method 990.03, protein (crude) in animal feed, combustion method. Official Methods of Analysis of AOAC International, 30–31

  • Hotz, C., & Gibson, R. S. (2007). Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition, 137(4), 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Hunaefi, D., Gruda, N., Riedel, H., Akumo, D. N., Saw, N. M. M. T., & Smetanska, I. (2013). Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. Food Biotechnology, 27(4), 279–302

    Article  CAS  Google Scholar 

  • Ibrahim, S., Habiba, R., Shatta, A., & Embaby, H. (2002). Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Food/nahrung, 46(2), 92–95

    Article  CAS  PubMed  Google Scholar 

  • Inyang, C., & Zakari, U. (2008). Effect of germination and fermentation of pearl millet on proximate, chemical and sensory properties of instant “Fura”-a Nigerian cereal food. Pakistan Journal of Nutrition, 7(1), 9–12

    Article  CAS  Google Scholar 

  • Karovičová, Z. K. J., & Kohajdova, J. (2007). Fermentation of cereals for specific purpose. Journal of Food and Nutrition Research, 46(2), 51–57

    Google Scholar 

  • Karunanithy, C., Karuppuchamy, V., Muthukumarappan, K., & Gibbons, W. R. (2012). Selection of enzyme combination, dose, and temperature for hydrolysis of soybean white flakes. Industrial Biotechnology, 8(5), 309–317

    Article  CAS  Google Scholar 

  • Kaur, D., Dhawan, K., Rasane, P., Singh, J., Kaur, S., Gurumayum, S., Kumar, V. (2020). Effect of Different Pre-Treatments on Antinutrients and Antioxidants of Rice Bean (Vigna umbellata). Acta Universitatis Cibiniensis. Series E: Food Technology, 24(1), 25–38

  • Khajali, F., & Slominski, B. (2012). Factors that affect the nutritive value of canola meal for poultry. Poultry Science, 91(10), 2564–2575

    Article  CAS  PubMed  Google Scholar 

  • Khalil, A. W., Zeb, A., Mahmood, F., Tariq, S., Khattak, A. B., & Shah, H. (2007). Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT-Food Science and Technology, 40(6), 937–945

  • Khattab, R., & Arntfield, S. (2009). Functional properties of raw and processed canola meal. LWT-Food Science and Technology, 42(6), 1119–1124

    Article  CAS  Google Scholar 

  • Khetarpaul, N., & Chauhan, B. (1990). Effect of germination and fermentation on available carhohydrate content of pearl millet. Food Chemistry, 38(1), 21–26

    Article  CAS  Google Scholar 

  • Lund, M. N., & Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537–4552

    Article  CAS  PubMed  Google Scholar 

  • Maejima, Y., Nakatsugawa, H., Ichida, D., Maejima, M., Aoyagi, Y., Maoka, T., & Etoh, H. (2011). Functional compounds in fermented buckwheat sprouts. Bioscience, Biotechnology, and Biochemistry, 75(9), 1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Mailer, R. J., McFadden, A., Ayton, J., & Redden, B. (2008). Anti-nutritional components, fibre, sinapine and glucosinolate content, in australian canola (Brassica napus L.) meal. Journal of the American Oil Chemists' Society, 85(10), 937–944

  • Masood, T., Shah, H., & Zeb, A. (2014). Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer Arietinum L.) seeds. The Journal of Animal & Plant Sciences, 24(3), 850–859

  • Megazyme. (2017). Phytic Acid (phytate)/Total Phosphorus. Retrieved from https://www.megazyme.com/documents/Booklet/K-PHYT_DATA.pdf

  • Mulimani, V., Thippeswamy, S., & Ramalingam, S. (1997). Enzymatic degradation of oligosaccharides in soybean flours. Food Chemistry, 59(2), 279–282

    Article  CAS  Google Scholar 

  • Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458

    Article  CAS  Google Scholar 

  • Nonogaki, H., Bassel, G. W., & Bewley, J. D. (2010). Germination—still a mystery. Plant Science, 179(6), 574–581

    Article  CAS  Google Scholar 

  • Nyombaire, G., Siddiq, M., & Dolan, K. (2007). Effect of soaking and cooking on the oligosaccharides and lectins in red kidney beans (Phaseolus vulgaris L.). Annual Report-bean Improvement Cooperative, 50, 31

  • Obizoba, I. C., & Atii, J. (1991). Effect of soaking, sprouting, fermentation and cooking on nutrient composition and some anti-nutritional factors of sorghum (Guinesia) seeds. Plant Foods for Human Nutrition, 41(3), 203–212

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans, K., Barrett, D. M., Suades, C. B., Verkerk, R., & Dekker, M. (2006). Thermal degradation of glucosinolates in red cabbage. Food Chemistry, 95(1), 19–29

    Article  CAS  Google Scholar 

  • Ojokoh, A., Daramola, M., & Oluoti, O. (2013). Effect of fermentation on nutrient and anti-nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours. African Journal of Agricultural Research, 8(27), 3566–3570

    Article  CAS  Google Scholar 

  • Ongol, M. P., Niyonzima, E., Gisanura, I., & Vasanthakaalam, H. (2013). Effect of germination and fermentation on nutrients in maize flour. Pakistan Journal of Food Sciences, 23(4), 183–188

    Google Scholar 

  • Onyango, C., Ochanda, S., Mwasaru, M., Ochieng, J., Mathooko, F. M., & Kinyuru, J. (2013). Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet. Journal of Food Research, 2(1), 41

    Article  CAS  Google Scholar 

  • Oseni, O., & Akindahunsi, A. (2011). Some phytochemical properties and effect of fermentation on the seed of Jatropha curcas L. American Journal of Food Technology, 6(2), 158–165

    Article  CAS  Google Scholar 

  • Osman, M. A. (2011). Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. Journal of the Saudi Society of Agricultural Sciences, 10(1), 1–6

    Article  CAS  Google Scholar 

  • Östbring, K., Malmqvist, E., Nilsson, K., Rosenlind, I., & Rayner, M. (2020). The effects of oil extraction methods on recovery yield and emulsifying properties of proteins from rapeseed meal and press cake. Foods, 9(1), 19

    Article  CAS  Google Scholar 

  • Padmore, J. (1990). Animal feed-AOAC official method 920.39–Fat (crude) or ether extract in animal feed. Official Methods of Analysis, 15th ed.; Helrich, K., Ed, 79

  • Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2–3), 81–84

    Article  CAS  Google Scholar 

  • Rasane, P., Jha, A., Kumar, A., & Sharma, N. (2015). Reduction in phytic acid content and enhancement of antioxidant properties of nutricereals by processing for developing a fermented baby food. Journal of Food Science and Technology, 52(6), 3219–3234

    CAS  PubMed  Google Scholar 

  • Raymer, P. L. (2002). Canola: an emerging oilseed crop. Trends in New Crops and New Uses, 1, 122–126

    Google Scholar 

  • Reddy, N., Pierson, M., Sathe, S., & Salunkhe, D. (1989). Influence of processing technologies on phytate. Phytates in Cereals and Legumes, 111–135

  • Sakorn, P., Rakariyatham, N., Niamsup, H., & Kovitaya, P. (1999). Sinigrin degradation by Aspergillus sp. NR-4201 in liquid culture. Science Asia, 25(4), 189–194

  • Shah, S. A., Zeb, A., Masood, T., Noreen, N., Abbas, S. J., Samiullah, M., & Muhammad, A. (2011). Effects of sprouting time on biochemical and nutritional qualities of mungbean varieties. African Journal of Agricultural Research, 6(22), 5091–5098

    Google Scholar 

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP). Retrieved from https://www.nrel.gov/docs/gen/fy08/42622.pdf

  • Sun Lim, K., Young Koo, S., Jin, J., Hwangi, S., Han Sun, H., & Park, C. H. (2001). Development and utilization of buckwheat sprouts as functional vegetables. Fagopyrum, 18(49), 4

    Google Scholar 

  • Tan, S. H., Mailer, R. J., Blanchard, C. L., & Agboola, S. O. (2011). Extraction and characterization of protein fractions from Australian canola meals. Food Research International, 44(4), 1075–1082

    Article  CAS  Google Scholar 

  • Vig, A. P., & Walia, A. (2001). Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal. Bioresource Technology, 78(3), 309–312

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. J., & Hsiao, K. C. (1995). Sugar degradation during autoclaving: effects of duration and solution volume on breakdown of glucose. Physiologia Plantarum, 94(3), 415–418

    Article  CAS  Google Scholar 

  • Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulase by Trichoderma reesei from dairy manure. Bioresource Technology, 96(4), 491–499

    Article  CAS  PubMed  Google Scholar 

  • Ye, J. H., Huang, L. Y., Terefe, N. S., & Augustin, M. A. (2019). Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chemistry, 286, 616–623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the U.S. Department of Agriculture, Agricultural Research Service. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu Karki.

Ethics declarations

Disclaimer

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhomodi, A.F., Zavadil, A., Berhow, M. et al. Daily Development of Nutritional Composition of Canola Sprouts Followed by Solid-state Fungal Fermentation. Food Bioprocess Technol 14, 1673–1683 (2021). https://doi.org/10.1007/s11947-021-02667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02667-2

Keywords