Skip to main content
Log in

Reduction of Water Vapor Permeability in Food Multilayer Biopackaging by Epitaxial Crystallization of Beeswax

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this paper, multilayer pectin-beeswax/colophony-pectin (P-BC-P) films including different proportions of beeswax/colophony mixtures were prepared in order to reduce the water vapor permeability. FTIR, XRD, DSC, polarized light microscopy (PLM), and water vapor permeation assays were performed. Characterization techniques showed (i) polar interactions between beeswax and colophony at the amorphous phase, (ii) changes in beeswax crystalline phase from sponge-like to needle-like structure, and (iii) formation of a eutectic mixture at BC3 70/30 ratio which guides the epitaxial crystallization of beeswax. Pure pectin films showed low resistance to the water vapor permeation (361 × 10−13 g m m−2 s−1 Pa−1), while multilayer films showed major control over the transport process. P-BC3-P showed one of the lowest water vapor permeability (WVP) values (56 × 10−13 g m m−2 s−1 Pa−1) and the closest WVP value to that of polyethylene films (LDPE 5.8 × 10−13 g m m−2 s−1 Pa−1). This result was attributed to the ordered crystalline structure reached by the epitaxial crystallization of beeswax within the hydrophobic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelhak, M. (2019). A review: Application of biopolymers in the pharmaceutical formulation, (1), 15–25.

  • Abdikheibari, S., Parvizi, R., Moayed, M. H., Zebarjad, S. M., & Sajjadi, S. A. (2015). Beeswax-colophony blend: A novel green organic coating for protection of steel drinking water storage tanks. Metals, 5(3), 1645–1664.

    Article  Google Scholar 

  • Alves, V. D., Costa, N., & Coelhoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers, 79(2), 269–276.

    Article  CAS  Google Scholar 

  • ASTM, E. (n.d.) (96). Standard test methods for water vapor transmission of materials. ASTM International: West, Conshohocken, PA.

  • Attama, A. A., Schicke, B. C., & Müller-Goymann, C. C. (2006). Further characterization of theobroma oil–beeswax admixtures as lipid matrices for improved drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 64(3), 294–306.

    Article  CAS  PubMed  Google Scholar 

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6(9), 2419–2428.

    Article  CAS  Google Scholar 

  • Borchman, D. (2014). From the bench to the bedside: Infrared spectroscopy and the diagnosis and treatment of dry eye and cataracts. Spectroscopy, 29(2), 38–52.

    CAS  Google Scholar 

  • Borchman, D., Foulks, G. N., Yappert, M. C., & Ho, D. V. (2007). Temperature-induced conformational changes in human tearlipids hydrocarbon chains. Biopolymers: Original Research on Biomolecules, 87(2–3), 124–133.

    Article  CAS  Google Scholar 

  • Cruces, F., García, M. G., & Ochoa, N. A. (2019). Can the maximum volume fraction ensure optimum reinforcement in short-fiber composites? Journal of Applied Polymer Science, 136(31), 47821.

    Article  Google Scholar 

  • Crucitti, V. C., Migneco, L. M., Piozzi, A., Taresco, V., Garnett, M., Argent, R. H., & Francolini, I. (2018). Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. European Journal of Pharmaceutics and Biopharmaceutics, 125, 114–123.

    Article  Google Scholar 

  • Da Silva, D. C., Lopes, I. A., Da Silva, L. J. S., Lima, M. F., Barros Filho, A. K. D., Villa-Vélez, H. A., & Santana, A. A. (2019). Physical properties of films based on pectin and babassu coconut mesocarp. International journal of biological macromolecules, 130, 419–428.

    Article  PubMed  Google Scholar 

  • Debeaufort, F., Quezada-Gallo, J.-A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47–55.

    Article  CAS  Google Scholar 

  • Dorset, D. L. (1999). Development of lamellar structures in natural waxes-an electron diffraction investigation. Journal of Physics D: Applied Physics, 32(11), 1276–1280.

    Article  CAS  Google Scholar 

  • Dorset, D. L. (2013). Structural electron crystallography. Springer Science & Business Media.

  • Favvas, E. P., Kouvelos, E. P., Papageorgiou, S. K., Tsanaktsidis, C. G., & Mitropoulos, A. C. (2015). Characterization of natural resin materials using water adsorption and various advanced techniques. Applied Physics A, 119(2), 735–743.

    Article  CAS  Google Scholar 

  • Fraga, S. C., Azevedo, M. A., Coelhoso, I. M., Brazinha, C., & Crespo, J. G. (2018). Steady-state and transient transport studies of gas permeation through dense membranes using on-line mass spectrometry. Separation and Purification Technology, 197, 18–26.

    Article  CAS  Google Scholar 

  • Gaillard, Y., Mija, A., Burr, A., Darque-Ceretti, E., Felder, E., & Sbirrazzuoli, N. (2011). Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica acta, 521(1–2), 90–97.

    Article  CAS  Google Scholar 

  • Jana, S. (2016). Crystallization behavior of waxes. Utah State University.

  • Jana, S., & Martini, S. (2014). Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils. Journal of agricultural and food chemistry, 62(41), 10192–10202.

    Article  CAS  PubMed  Google Scholar 

  • Jana, S., & Martini, S. (2016). Phase behavior of binary blends of four different waxes. Journal of the American Oil Chemists’ Society, 93(4), 543–554.

    Article  CAS  Google Scholar 

  • Jenning, V., & Gohla, S. (2000). Comparison of wax and glyceride solid lipid nanoparticles (SLN®). International journal of pharmaceutics, 196(2), 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food and Bioprocess Technology, 5(6), 2058–2076.

    Article  Google Scholar 

  • Jo, C., Kang, H., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). Pectin-and gelatin-based film: Effect of gamma irradiation on the mechanical properties and biodegradation. Radiation Physics and Chemistry, 72(6), 745–750.

    Article  CAS  Google Scholar 

  • Kameda, T. (2004). Molecular structure of crude beeswax studied by solid-state 13C NMR. Journal of Insect Science, 4(1).

  • Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 32(2), 501–529.

    Article  CAS  Google Scholar 

  • Khurana, R., Singh, K., Sapra, B., Tiwary, A. K., & Rana, V. (2014). Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength. Carbohydrate polymers, 102, 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Kristo, E., Biliaderis, C. G., & Zampraka, A. (2007). Water vapour barrier and tensile properties of composite caseinate-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food chemistry, 101(2), 753–764.

    Article  CAS  Google Scholar 

  • Leonid, V. (1968). Elements of X-ray crystallography. McGraw-Hill.

  • Michaels, A. S., & Parker Jr., R. B. (1959). Sorption and flow of gases in polyethylene. Journal of Polymer Science, 41(138), 53–71.

    Article  CAS  Google Scholar 

  • Ochoa, T. A., Almendárez, B. E. G., Reyes, A. A., Pastrana, D. M. R., López, G. F. G., Belloso, O. M., & Regalado-González, C. (2017). Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and bioprocess technology, 10(1), 103–114.

    Article  CAS  Google Scholar 

  • Pasini Cabello, S., Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491–497.

    Article  CAS  Google Scholar 

  • Pattanashetti, N. A., Heggannavar, G. B., & Kariduraganavar, M. Y. (2017). Smart biopolymers and their biomedical applications. Procedia Manufacturing, 12, 263–279.

    Article  Google Scholar 

  • Pawar, P. A. (2013). Aachal. H. Purwar. Bioderadable polymers in food packaging. American Journal of Engineering Research (AJER), 2, 151–164.

    Google Scholar 

  • Preda, F.-M., Alegría, A., Bocahut, A., Fillot, L.-A., Long, D. R., & Sotta, P. (2015). Investigation of water diffusion mechanisms in relation to polymer relaxations in polyamides. Macromolecules, 48(16), 5730–5741.

    Article  CAS  Google Scholar 

  • Rebelo, R., Fernandes, M., & Fangueiro, R. (2017). Biopolymers in medical implants: A brief review. Procedia engineering, 200, 236–243.

    Article  CAS  Google Scholar 

  • Sängerlaub, S., Schmid, M., & Müller, K. (2018). Comparison of water vapour transmission rates of monolayer films determined by water vapour sorption and permeation experiments. Food packaging and shelf life, 17, 80–84.

    Article  Google Scholar 

  • Schoening, F. R. L. (1980). The X-ray diffraction pattern and deformation texture of beeswax. South African Journal of Science, 76(6), 262–265.

    CAS  Google Scholar 

  • Shih, F. F., Daigle, K. W., & Champagne, E. T. (2011). Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chemistry, 127(1), 118–121.

    Article  CAS  Google Scholar 

  • Silva, H. D., Cerqueira, M. Â., & Vicente, A. A. (2012). Nanoemulsions for food applications: Development and characterization. Food and Bioprocess Technology, 5(3), 854–867.

    Article  CAS  Google Scholar 

  • Singh, A. V. (2011). Biopolymers in drug delivery: A review. Pharmacologyonline, 1, 666–674.

    Google Scholar 

  • Slavutsky, A. M., & Bertuzzi, M. A. (2016). Improvement of water barrier properties of starch films by lipid nanolamination. Food Packaging and Shelf Life, 7, 41–46.

    Article  Google Scholar 

  • Soazo, M., Rubiolo, A. C., & Verdini, R. A. (2011). Effect of drying temperature and beeswax content on physical properties of whey protein emulsion films. Food Hydrocolloids, 25(5), 1251–1255.

    Article  CAS  Google Scholar 

  • Sudesh, K., & Iwata, T. (2008). Review: Sustainability of biobased and biodegradable plastics, 36, 433–442.

  • Svečnjak, L., Baranović, G., Vinceković, M., & Pr\djun, S., Bubalo, D., & Gajger, I. T. (2015). An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. Journal of apicultural science, 59(2), 37–49.

    Article  Google Scholar 

  • Syahida, N., Fitry, I., Zuriyati, A., & Hanani, N. (2020). Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packaging and Shelf Life, 23, 100437.

    Article  Google Scholar 

  • Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydrate polymers, 132, 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Tavernier, I., Doan, C. D., Van de Walle, D., Danthine, S., Rimaux, T., & Dewettinck, K. (2017). Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC advances, 7(20), 12113–12125.

    Article  CAS  Google Scholar 

  • Wittmann, J. C., Hodge, A. M., & Lotz, B. (1983). Epitaxial crystallization of polymers onto benzoic acid: Polyethylene and paraffins, aliphatic polyesters, and polyamides. Journal of Polymer Science: Polymer Physics Edition, 21(12), 2495–2509.

    CAS  Google Scholar 

  • Zhang, W., Xiao, H., & Qian, L. (2014). Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydrate polymers, 101, 401–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants PROICO 2-2116 Universidad Nacional de San Luis and PIP-No11220130100448CO CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Guadalupe García or Nelio Ariel Ochoa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

This manuscript has not been published, and it is not under consideration for publication elsewhere.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material as online resource is available.

ESM 1

(PDF 231 kb)

ESM 2

(PDF 441 kb)

ESM 3

(PDF 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruces, F., García, M.G. & Ochoa, N.A. Reduction of Water Vapor Permeability in Food Multilayer Biopackaging by Epitaxial Crystallization of Beeswax. Food Bioprocess Technol 14, 1244–1255 (2021). https://doi.org/10.1007/s11947-021-02628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02628-9

Keywords

Navigation