Efficacy of Nanobubbles Alone or in Combination with Neutral Electrolyzed Water in Removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua Biofilms

Abstract

Due to the relatively high tolerance and resistance to sanitizers, biofilms can persist in the environment resulting in cross-contamination. The overall goal of this study was to evaluate the impact of nanobubbles (NB) alone and in combination with neutral electrolyzed water (NEW) on different microbial biofilms including Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua on plastic and stainless steel (SS) coupons. NB alone completely removed V. parahaemolyticus biofilm on both plastic and SS coupons after 2 min. NB alone caused about a 1 to 3 log CFU/cm2 reduction of E. coli and L. innocua biofilms, while a complete reduction was observed only after combining NB with NEW. The antiadhesion results of NB-treated plastic and SS coupons showed lower bacterial adhesion to NB-treated surfaces indicating that NB can attach to the surface and reduce the surface tension and bacterial adhesion. Surface-enhanced Raman spectroscopy spectra (SERS) and mapping results revealed the ability of NB to remove the bacterial biofilms. Raman spectra intensity was reduced at bands associated with carbohydrates, protein, and DNA indicating extracellular polymeric substance (EPS) disruption. This study demonstrates that NB could be a viable technology for removing microbial biofilms from surfaces and enhancing the efficacy of conventional sanitizers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ago, K. I., Nagasawa, K., Takita, J., Itano, R., Morii, N., Matsuda, K., & Takahashi, K. (2005). Development of an aerobic cultivation system by using a microbubble aeration technology. Journal of Chemical Engineering of Japan, 38(9), 757–762.

    CAS  Google Scholar 

  2. Ahmadi, R., Khodadadi, D. A., Abdollahy, M., & Fan, M. (2014). Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology, 24(4), 559–566.

    Google Scholar 

  3. Akuzawa, H., Amagai, K., Funatsu, M., Takakusagi, F., Tabei, K., & Noda, Y. (2010). Study on cleaning of pipe inner wall by micro-bubble flow. Japanese Journal of Multiphase Flow, 24(4), 454–461.

    Google Scholar 

  4. Bae, Y. M., Baek, S. Y., & Lee, S. Y. (2012). Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. International Journal of Food Microbiology, 153(3), 465–473.

    CAS  PubMed  Google Scholar 

  5. Balazs, D. J., Triandafillu, K., Chevolot, Y., Aronsson, B. O., Harms, H., Descouts, P., & Mathieu, H. J. (2003). Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surface and Interface Analysis, 35(3), 301–309.

    CAS  Google Scholar 

  6. Bridgett, M. J., Davies, M. C., & Denyer, S. P. (1992). Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials, 13(7), 411–416.

    CAS  PubMed  Google Scholar 

  7. Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J. C., Naitali, M., & Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 45, 167–178.

    CAS  PubMed  Google Scholar 

  8. Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 27(9), 1017–1032.

    CAS  PubMed  Google Scholar 

  9. Burfoot, D., Limburn, R., & Busby, R. (2017). Assessing the effects of incorporating bubbles into the water used for cleaning operations relevant to the food industry. International Journal of Food Science and Technology, 52(8), 1894–1903.

    CAS  Google Scholar 

  10. Cui, X., Shang, Y., Shi, Z., Xin, H., & Cao, W. (2009). Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering, 91(4), 582–586.

    CAS  Google Scholar 

  11. Demangeat, J. L. (2015). Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization. Homeopathy, 104(2), 101–115.

    PubMed  Google Scholar 

  12. Deotale, S. M., Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2020). Stability of Instant Coffee Foam by Nanobubbles Using Spray-Freeze Drying Technique. Food and Bioprocess Technology, 13(11), 1–12.

    Google Scholar 

  13. Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T., Koizumi, K., & Yoshikawa, H. (2013). Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One, 8(6), e65339.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, L., Liu, Y., Kim, D., Li, Y., Hwang, G., Naha, P. C., Cormode, D. P., & Koo, H. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101, 272–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghadimkhani, A., Zhang, W., & Marhaba, T. (2016). Ceramic membrane defouling (cleaning) by air Nano Bubbles. Chemosphere, 146, 379–384.

    CAS  PubMed  Google Scholar 

  16. Gibbons, R. J., & Etherden, I. (1983). Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles. Infection and Immunity, 41(3), 1190–1196.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guentzel, J. L., Lam, K. L., Callan, M. A., Emmons, S. A., & Dunham, V. L. (2008). Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiology, 25(1), 36–41.

    CAS  PubMed  Google Scholar 

  18. Gurung, A., Dahl, O., & Jansson, K. (2016). The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Eng., 19(3), 133–142.

    CAS  Google Scholar 

  19. Han, Q., Song, X., Zhang, Z., Fu, J., Wang, X., Malakar, P. K., Liu, H., Pan, Y., & Zhao, Y. (2017). Removal of foodborne pathogen biofilms by acidic electrolyzed water. Frontiers in Microbiology, 8, 988. https://doi.org/10.3389/fmicb.2017.00988.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hayakumo, S., Arakawa, S., Takahashi, M., Kondo, K., Mano, Y., & Izumi, Y. (2014). Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells-in vitro studies. Science and Technology of Advanced Materials, 15(5), 055003.

    PubMed  PubMed Central  Google Scholar 

  21. Huang, K., & Nitin, N. (2017). Enhanced removal of Escherichia coli O157: H7 and Listeria innocua from fresh lettuce leaves using surfactants during simulated washing. Food Control, 79, 207–217.

    CAS  Google Scholar 

  22. Huang, K., Tian, Y., Salvi, D., Karwe, M., & Nitin, N. (2018). Influence of exposure time, shear stress, and surfactants on detachment of Escherichia coli O157: H7 from fresh lettuce leaf surfaces during washing process. Food and Bioprocess Technology, 11(3), 621–633.

    CAS  Google Scholar 

  23. Hughes, G., & Webber, M. A. (2017). Novel Approaches to the treatment of bacterial biofilm infections. British Journal of Pharmacology, 174, 2237–2246.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivleva, N. P., Wagner, M., Szkola, A., Horn, H., Niessner, R., & Haisch, C. (2010). Label-free in situ SERS imaging of biofilms. The Journal of Physical Chemistry. B, 114(31), 10184–10194.

    CAS  PubMed  Google Scholar 

  25. Jang, H., Rusconi, R., & Stocker, R. (2017). Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution. npj Biofilm Microbiol., 3(1), 1–7.

    Google Scholar 

  26. Joseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International Journal of Food Microbiology, 64(3), 367–372.

    CAS  PubMed  Google Scholar 

  27. Kim, H., Ryu, J. H., & Beuchat, L. R. (2006). Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Applied and Environmental Microbiology, 72(9), 5846–5856.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kozima, H., Mukai, Y., Ransangan, J. & Senoo, S. (2006). Feasibility study of applications of micro-bubbles for aquaculture. In: Proceedings of the International Conference on Coastal Oceanography and Sustainable Marina Aquaculture, Confluence & Synergy, pp. 220–223.

  29. Lee, P. C., & Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 86(17), 3391–3395.

    CAS  Google Scholar 

  30. Liu, S., Oshita, S. & Makino, Y. (2014). Stimulating effect of nanobubbles on the reactive oxygen species generation inside barley seeds as studied by the microscope spectrophotometer. In Proceedings]. Int. Conf. of Agric. Eng., Zurich (pp. 06-10).

  31. Lu, X., Samuelson, D. R., Rasco, B. A., & Konkel, M. E. (2012). Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. The Journal of Antimicrobial Chemotherapy, 67(8), 1915–1926.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Movasaghi, Z., Rehman, S., & Rehman, I. U. (2007). Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews, 42(5), 493–541.

    CAS  Google Scholar 

  33. Niemira, B. A. (2010). Irradiation sensitivity of planktonic and biofilm-associated Listeria monocytogenes and L. innocua as influenced by temperature of biofilm formation. Food and Bioprocess Technology, 3(2), 257–264.

    Google Scholar 

  34. Ovissipour, M., Al-Qadiri, H. M., Sablani, S. S., Govindan, B. N., Al-Alami, N., & Rasco, B. (2015). Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104: H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control, 53, 117–123.

    CAS  Google Scholar 

  35. Ovissipour, R., Rai, R., & Nitin, N. (2019). DNA-based surrogate indicator for sanitation verification and predict inactivation of Escherichia coli O157:H7 using vibrational spectroscopy (FTIR). Food Control, 100, 67–77.

    CAS  Google Scholar 

  36. Ovissipour, R., Shiroodi, S. G., Rasco, B., Tang, J., & Sablani, S. S. (2018). Electrolyzed water and mild-thermal processing of Atlantic salmon (Salmo salar): Reduction of Listeria monocytogenes and changes in protein structure. International Journal of Food Microbiology, 276, 10–19.

    CAS  PubMed  Google Scholar 

  37. Peck, O. P., Chew, Y. J., & Bird, M. R. (2019). On-line quantification of thickness and strength of single and mixed species biofilm grown under controlled laminar flow conditions. Food and Bioproc. Proccess., 113, 49–59.

    Google Scholar 

  38. Phan, K. K., Truong, T., Wang, Y., & Bhandari, B. (2019). Nanobubbles: Fundamental characteristics and applications in food processing. Trends in Food Science and Technology, 95, 118–130.

    Google Scholar 

  39. Rafeeq, S., Shiroodi, S., Schwarz, M. H., Nitin, N., & Ovissipour, R. (2020). Inactivation of Aeromonas hydrophila and Vibrio parahaemolyticus by Curcumin-Mediated Photosensitization and Nanobubble-Ultrasonication Approaches. Foods, 9, 1306.

    CAS  PubMed Central  Google Scholar 

  40. Şen, Y., Bağcı, U., Güleç, H. A., & Mutlu, M. (2012). Modification of food-contacting surfaces by plasma polymerization technique: reducing the biofouling of microorganisms on stainless steel surface. Food and Bioprocess Technology, 5(1), 166–175.

    Google Scholar 

  41. Shen, Y. (2016). Response of simulated drinking water biofilm mechanical and structural properties to long-term disinfectant exposure. Environmental Science & Technology, 50(4), 1779–1787.

    CAS  Google Scholar 

  42. Shiroodi, S. G., Ovissipour, R., Ross, C. F., & Rasco, B. (2016). Efficacy of electrolyzed oxidizing water as a pretreatment method for reducing Listeria monocytogenes contamination in cold-smoked Atlantic salmon (Salmo salar). Food Control, 60, 401–407.

    Google Scholar 

  43. Teirlinck, E., Fraire, J. C., Van Acker, H., Wille, J., Swimberghe, R., Brans, T., Xiong, R., Meire, M., De Moor, R. J. G., De Smedt, S. C., & Coenye, T. (2019). Laser-induced vapor nanobubbles improve diffusion in biofilms of antimicrobial agents for wound care. Biofilm, 1, 100004.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Teirlinck, E., Xiong, R., Brans, T., Forier, K., Fraire, J., Van Acker, H., Matthijs, N., De Rycke, R., De Smedt, S. C., Coenye, T., & Braeckmans, K. (2018). Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nature Communications, 9(1), 1–12.

    CAS  Google Scholar 

  45. Triandafillu, K., Balazs, D. J., Aronsson, B. O., Descouts, P., Quoc, P. T., Van Delden, C., Mathieu, H. J., & Harms, H. (2003). Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly (vinyl chloride)(PVC) from endotracheal intubation devices. Biomaterials, 24(8), 1507–1518.

    CAS  PubMed  Google Scholar 

  46. Ushida, A., Koyama, T., Nakamoto, Y., Narumi, T., Sato, T., & Hasegawa, T. (2017). Antimicrobial effectiveness of ultra-fine ozone-rich bubble mixtures for fresh vegetables using an alternating flow. Journal of Food Engineering, 206, 48–56.

    CAS  Google Scholar 

  47. Ushikubo, F. Y., Furukawa, T., Nakagawa, R., Enari, M., Makino, Y., Kawagoe, Y., Shiina, T., & Oshita, S. (2010). Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361(1-3), 31–37.

    CAS  Google Scholar 

  48. Wang, J., Xie, X., Feng, J., Chen, J. C., Du, X. J., Luo, J., Lu, X., & Wang, S. (2015). Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. International Journal of Food Microbiology, 204, 66–74.

    CAS  PubMed  Google Scholar 

  49. Wang, X., Zhang, H., Yang, F., Wang, Y., & Gao, M. (2008). Long-term storage and subsequent reactivation of aerobic granules. Bioresource Technology, 99(17), 8304–8309.

    CAS  PubMed  Google Scholar 

  50. Wu, Z., Chen, H., Dong, Y., Mao, H., Sun, J., Chen, S., Craig, V. S., & Hu, J. (2008). Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. Journal of Colloid and Interface Science, 328(1), 10–14.

    CAS  PubMed  Google Scholar 

  51. Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58), 36670–36683.

    CAS  Google Scholar 

  52. Zhou, Q., Zhang, L., Chen, J., Luo, Y., Zou, H., & Sun, B. (2016). Enhanced stable long-term operation of biotrickling filters treating VOCs by low-dose ozonation and its affecting mechanism on biofilm. Chemosphere, 162, 139–147.

    CAS  PubMed  Google Scholar 

  53. Zhu, J., An, H., Alheshibri, M., Liu, L., Terpstra, P. M., Liu, G., & Craig, V. S. (2016). Cleaning with bulk nanobubbles. Langmuir, 32(43), 1203–11211.

    Google Scholar 

  54. Zhu, Z., Sun, D. W., Zhang, Z., Li, Y., & Cheng, L. (2018). Effects of micro-nano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT, 92, 404–411.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Trevor Suslow at UC Davis for providing Rif-Resistant E. coli O157:H7 strain, and Dr. Laura Strawn at Virginia Tech. for providing L. innocua strain. We acknowledge technical support from AquaOx and Moleaer Inc.

Funding

This study was partially supported by the USDA National Institute of Food and Agriculture, Hatch-1021077, and College of Agriculture and Life Sciences at Virginia Tech.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza Ovissipour.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shiroodi, S., Schwarz, M.H., Nitin, N. et al. Efficacy of Nanobubbles Alone or in Combination with Neutral Electrolyzed Water in Removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua Biofilms. Food Bioprocess Technol 14, 287–297 (2021). https://doi.org/10.1007/s11947-020-02572-0

Download citation

Keywords

  • Biofilm
  • Nanobubbles
  • Electrolyzed water
  • Confocal Raman microscopy