Barley Malt Esterification after Ultrasound and Stearic Acid Treatment: Characterization and Use as Stabilizing Agent in Oil-in-Water Emulsions

Abstract

This work aimed to obtain novel materials from malt modification for using in oil/water emulsions. Malt was modified using stearic acid (2% w/w) in combination with different energy densities (33.8 × 106, 60 × 106, 72.5 × 106, and 107.5 × 106 J/m3) from ultrasound probe resulting in four materials. These materials were characterized by degree of substitution (DS), amylose content, dextrose equivalent (DE), protein content, solubility, thermal properties, Fourier-transform infrared spectroscopy (FT-IR), crystallinity analysis by X-ray diffraction, and scanning electron microscopy. Emulsions containing 15% total solids (25% canola oil and 75% modified malt as stabilizing agent) were prepared and characterized. Results showed that increasing energy densities produced different effects on malt properties due to an increase in DS, amylose content, and DE values. The sonication process in combination with stearic acid increased malt solubility and the gelatinization temperature of malt, caused modifications of starch crystallinity in the amorphous region and hydrolysis of starch granules, and promoted good stabilizing properties for emulsions containing modified malt.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abedi, E., Pourmohammadi, K., Jahromi, M., Mehardad, N., & Torri, L. (2019). The Effect of Ultrasonic Probe Size for Effective Ultrasound-Assisted Pregelatinized Starch. Food and Bioprocess Technology, 12(11), 1852–1862. https://doi.org/10.1007/s11947-019-02347-2.

    CAS  Article  Google Scholar 

  2. Alves, F. C. G. B., Viell, F. L. G., & Plata-Oviedo, M. P.-O. (2015). Amido de mandioca (Manihot esculenta Crantz) esterificado com ácido esteárico. Rebrapa, 6. https://doi.org/10.14685/rebrapa.v6i2.175.

  3. Amini, A. M., Razavi, S. M. A., & Mortazavi, S. A. (2015). Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers, 122, 282–595 292. 122. 282–292. https://doi.org/10.1016/j.carbpol.2015.01.020.

    CAS  Article  Google Scholar 

  4. Arijaje, E. O., & Wang, Y. J. (2017). Effects of chemical and enzymatic modifications on starch linoleic acid complex formation. Food Chemistry, 217(9), 17–17. https://doi.org/10.1016/j.foodchem.2016.08.072.

    CAS  Article  Google Scholar 

  5. BeMiller, J. N. F. P., & Applications, T. (1996). Trends in Food Science & Technology, 7, 207–208.

  6. BeMiller, J. N. (2017). Physical modification of starch. In Starch in food: Structure, Function and Applications (pp. 223–252). 2nd Edn. https://doi.org/10.1016/B978-0-08-100868-3.00005-6.

  7. BeMiller, J. N. (2019). Starches. In A. N. BeMiller (Ed.), Carbohydate Chemistry for Food Scientists :Third Edition (pp. 191–221). https://doi.org/10.1007/978-0-387-71327-4_2.

    Chapter  Google Scholar 

  8. Chan, H. T., Bhat, R., & Karim, A. A. (2010). Effects ofsodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chemistry, 120(3), 703–709. https://doi.org/10.1016/j.foodchem.2009.10.066.

  9. Comunian, T. A., Anthero, A. G. S., Bezerra, E. O., Moraes, I. C. F., & Hubinger, M. D. (2019). Encapsulation of pomegranate seed oil by emulsification followed by spray drying : Evaluation of different biopolymers and their effect on particle properties. Food and Bioprocess Technology, 13(1), 53–66. https://doi.org/10.1007/s11947-019-02380-1.

    CAS  Article  Google Scholar 

  10. Corradini, E., Lotti, C., de Medeiros, E. S., Carvalho, A. J. F., Curvelo, A. A. S., & Mattoso, L. H. C. (2005). Comparative studies of corn thermoplastic starches with different amylose content. Polímeros, 15(4), 268–273. https://doi.org/10.1590/S0104-14282005000400011.

  11. El Halal, S. L. M., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., et al. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247–256. https://doi.org/10.1016/j.foodchem.2014.07.046.

    CAS  Article  PubMed  Google Scholar 

  12. Eliasson, A.-C. E. (2004). Starch in food structure, Function and Applications (624p). Woodhead. https://doi.org/10.1533/9781855739093.2.258.

  13. Emami, S., Perera, A., Meda, V., & Tyler, R. T. (2012). Effect of microwave treatment on starch digestibility and Physico-chemical properties of three barley types. Food and Bioprocess Technology, 5(6), 2266–2274. https://doi.org/10.1007/s11947-011-0688-2.

    CAS  Article  Google Scholar 

  14. Falsafi, S. R., Maghsoudlou, Y., Aalami, M., Jafari, S. M., & Raeisi, M. (2018). Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities. Ultrasonics Sonochemistry, 53, 110–119. https://doi.org/10.1016/j.ultsonch.2018.12.039.

    CAS  Article  PubMed  Google Scholar 

  15. Falsafi, S. R., Maghsoudlou, Y., Rostamabadi, H., Rostamabadi, M., Hamedi, H., & Hosseini, S. M. H. (2019). Preparation of physically modified oat starch with different sonication treatments. Food Hydrocolloids, 89, 89–320. https://doi.org/10.1016/j.foodhyd.2018.10.046.

    CAS  Article  Google Scholar 

  16. Flores-Silva, P. C., Roldan-Cruz, C. A., Chavez-Esquivel, G., Vernon-Carter, E. J., Bello-Perez, L. A., & Alvarez-Ramirez, J. (2017). In vitro digestibility of ultrasound-treated corn starch. Starch-Starke, 69(9-10), 1700040.

    Article  Google Scholar 

  17. Fonseca-Florido, H. A., Vázquez-García, H. G., Méndez-Montealvo, G., Basilio-Cortés, U. A., Navarro-Cortés, R., Rodríguez-Marín, M. L., Castro-Rosas, J., & Gómez-Aldapa, C. A. (2018). Effect of acid hydrolysis and OSA esterification of waxy cassava starch on emulsifying properties in Pickering-type emulsions. LWT - Food Science and Technology, 91, 258–264. https://doi.org/10.1016/j.lwt.2018.01.057.

    CAS  Article  Google Scholar 

  18. García-Tejeda, Y. V., Leal-Castañeda, E. J., Espinosa-Solis, V., & Barrera-Figueroa, V. (2018). Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil in water emulsions. Carbohydrate Polymers, 194(177), 183–183. https://doi.org/10.1016/j.carbpol.2018.04.029.

    CAS  Article  Google Scholar 

  19. Hu, H., Liu, W., Shi, J., Huang, Z., Zhang, Y., Huang, A., et al. (2016). Structure and functional properties of octenyl succinic anhydride modified starch prepared by a non-conventional technology. Starch - Stärke, 68(1-2), 151–159. https://doi.org/10.1002/star.201500195.

  20. Iida, Y., Tuziuti, T., Yasui, K., Towata, A., & Kozuka, T. (2008). Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies, 9(2), 140–146. https://doi.org/10.1016/j.ifset.2007.03.029.

    CAS  Article  Google Scholar 

  21. ISO. Determination de la teneur en amylose. (1987). ISO 6647.International Organization Standarization, Suiza.

  22. Jafari, S. M., He, Y. H., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82, 478–488. https://doi.org/10.1016/j.jfoodeng.2007.03.007.

  23. Jeon, Y., Vasanthan, T., Temelli, F., & Song, B. (2003). The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavor encapsulation. Food Research International, 36(4), 349–355. https://doi.org/10.1016/S0963-9969(02)00226-0.

    CAS  Article  Google Scholar 

  24. Kang, W., Xu, B., Wang, Y., Li, Y., Shan, X., An, F., & Liu, J. (2011). Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1-3), 555–560. https://doi.org/10.1016/j.colsurfa.2011.05.017.

  25. Kasica, J.J., Choe, V., Kouba, E., Styer, E. Highly soluble hydratable, viscous, solution stable pyrodextrins, process of making and use thereof. (2001). Patent available at:< https://patents.google.com/patent/US6191116> accessed at: December 22nd of 2020.

  26. Kasprzak, M. M., Macnaughtan, W., Harding, S., Wilde, P., & Wolf, B. (2018). Stabilisation of oil-in-water emulsions with non-chemical modified gelatinised starch. Food Hydrocolloids, 81, 409–418. https://doi.org/10.1016/j.foodhyd.2018.03.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Leal-Castañeda, E. J., García-Tejeda, Y., Hernández-Sánchez, H., Alamilla-Beltrán, L., Téllez-Medina, D. I., Calderón-Domínguez, G., et al. (2018). Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocolloids, 80, 177–185. https://doi.org/10.1016/j.foodhyd.2018.01.043.

    CAS  Article  Google Scholar 

  28. Leitao, C., Marchioni, E., Bergaentzlé, M., Zhao, M., Didierjean, L., Miesch, L., Holder, E., Miesch, M., & Ennahar, S. (2012). Fate of polyphenols and antioxidant activity of barley throughout malting and brewing. Journal of Cereal Science, 55(3), 318–322. https://doi.org/10.1016/j.jcs.2012.01.002.

    CAS  Article  Google Scholar 

  29. López-martínez, L. X., Leyva-lópez, N., Gutiérrez-grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods, 38, 624–634. https://doi.org/10.1016/j.jff.2017.03.002.

    CAS  Article  Google Scholar 

  30. Lui, Q. (2005). Understanding starches and their role in foods. In S. W. Cui (Ed.), Food carbohydrates (p. 309e356). Boca Raton. FL: CRC Press.

    Google Scholar 

  31. Maetens, E., Hettiarachchy, N., Dewettinck, K., Horax, R., Moens, K., & Moseley, D. O. (2017). LWT - food science and technology physicochemical and nutritional properties of a healthy snack chip developed from germinated soybeans. LWT - Food Science and Technology, 84, 505–510. https://doi.org/10.1016/j.lwt.2017.06.020.

    CAS  Article  Google Scholar 

  32. Majeed, T., Wani, I. A., & Hussain, P. R. (2017). Effect of dual modification of sonication and γ-irradiation on physicochemical and functional properties of lentil (Lens culinaris L.) starch. International Journal of Biological Macromolecules, 101, 358–365. https://doi.org/10.1016/j.ijbiomac.2017.03.110.

    CAS  Article  PubMed  Google Scholar 

  33. Matsuura, T., Ogawa, A., Tomabechi, M., Matsushita, R., Gohtani, S., Neoh, T. L., & Yoshii, H. (2015). Effect of dextrose equivalent of maltodextrin on the stability of emulsified coconut-oil in spray-dried powder. Journal of Food Engineering, 163, 54–59. https://doi.org/10.1016/j.jfoodeng.2015.04.018.

    CAS  Article  Google Scholar 

  34. McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47(7), 611–649. https://doi.org/10.1080/10408390701289292.

    CAS  Article  PubMed  Google Scholar 

  35. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Journal Analytical Chemistry, 31(3), 426–428.

    CAS  Article  Google Scholar 

  36. Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound,42, 795-804. Ultrasonics Sonochemistry., 42, 795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048.

    CAS  Article  PubMed  Google Scholar 

  37. Montanuci, F. D., Ribani, M., Jorge, L. M. M., & Jorge, R. M. M. (2016). Effect of steeping time and temperature on malting process. Journal of Food Process Engineering, 40(4), 1–7. https://doi.org/10.1111/jfpe.12519.

    CAS  Article  Google Scholar 

  38. Nelson, K., Mathai, M. L., Ashton, J. F., Donkor, O. N., Vasiljevic, T., Mamilla, R., & Stojanovska, L. (2016). Effects of malted and non-malted whole-grain wheat on metabolic and inflammatory biomarkers in overweight / obese adults : A randomised crossover pilot study. Food Chemistry, 194, 495–502. https://doi.org/10.1016/j.foodchem.2015.08.023.

    CAS  Article  PubMed  Google Scholar 

  39. Oliveira, É. R., Fernandes, R. V. B., Botrel, D. A., & Carmo, E. L. (2018). Study of Different Wall matrix biopolymers on the properties of spray-dried Pequi oil and on the stability of bioactive compounds. Food and Bioprocess Technology, 11(3), 660–679. https://doi.org/10.1007/s11947-017-2027-8.

    CAS  Article  Google Scholar 

  40. Palavecino, P. M., Penci, M. C., & Ribotta, P. D. (2019). Effect of sustainable chemical modifications on pasting and gel properties of Sorghum and cassava starch. Food and Bioprocess Technology, 13(1), 112–120. https://doi.org/10.1007/s11947-019-02381-0.

    CAS  Article  Google Scholar 

  41. Pycia, K., Juszczak, L., Gałkowska, D., Witczak, M., & Jaworska, G. (2016). Maltodextrins from chemically modified starches. Selected physicochemical properties. Carbohydrate Polymers, 146, 301–309. https://doi.org/10.1016/j.carbpol.2016.03.057.

    CAS  Article  PubMed  Google Scholar 

  42. Rittenauer, M., Kolesnik, L., Gastl, M., & Becker, T. (2015). From native malt to pure starch – Development and characterization of a purification procedure for modified starch. Food Hydrocolloids, 56, 56–57. https://doi.org/10.1016/j.foodhyd.2015.11.025.

    CAS  Article  Google Scholar 

  43. Roos, H. (1995). Phase transitions in foods (349p). Academic Press.

  44. Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starchda review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.

  45. Simsek, S., Ovando-Martinez, M., Marefati, A., Sj, M., & Rayner, M. (2015). Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Food Research International, 75(41), 49–49. https://doi.org/10.1016/j.foodres.2015.05.034.

    CAS  Article  Google Scholar 

  46. Smith, R. J. (1967). Characterisation and analysis of starches. In R. L. Whistler & E. F. Paschall (Eds.), Starch: Chemistry and technology (pp. 620–625). New York: Academic Press.

  47. Sui, Z., & Kong, X. (2018). Physical Modifications of Starch. https://doi.org/10.1007/978-981-13-0725-6

  48. Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids, 31(2), 413–419. https://doi.org/10.1016/j.foodhyd.2012.11.027.

    CAS  Article  Google Scholar 

  49. van Donkelaar, L. H. G., Martinez, J. T., Frijters, H., Noordman, T. R., Boom, R. M., & Van Der Goot, A. J. (2015). Glass transitions of barley starch and protein in the endosperm andisolated from. Food Research International, 72(241), 246–246. https://doi.org/10.1016/j.foodres.2015.03.042.

    CAS  Article  Google Scholar 

  50. Whelan, W. J. (1964). Hydrolysis with α-amylase. Methods in carbohydrate (Vol. 4). New York.

  51. Wurzburg, O. B. (2006). Modified starch. In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.), Food Polysaccharides and their applications (2nd ed., pp. 86–118). Boca Raton: CRC Press.

    Google Scholar 

  52. You, Q., Zhang, X., Fang, X., Yin, X., Luo, C., & Wan, M. (2019). Ultrasonic-assisted preparation and characterization of RS3 from pea starch. Food and Bioprocess Technology, 12, 1244. https://doi.org/10.1007/s11947-019-02277-z2008 1–6.

    CAS  Article  Google Scholar 

  53. Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology, 42(1), 1–17. https://doi.org/10.1016/j.tifs.2014.12.008.

    CAS  Article  Google Scholar 

  54. Zhu, J., Li, L., Chen, L., & Li, X. (2012). Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloids, 29(1), 116–122. https://doi.org/10.1016/j.foodhyd.2012.02.004.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to São Paulo Research Foundation (FAPESP) for the financial support (EMU 2009/54137-1, 2007/58017-5, 2015/11984-7, and 2018/20466-8) and CNPq (306461/2017-0), and scholarship conceded to Ana Gabriela da S. Anthero (Process number: 2018/02132-5), and to Talita A. Comunian (Process 2018/01710-5).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Gabriela da Silva Anthero.

Ethics declarations

Conflict of Interest

The authors of this study state that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva Anthero, A.G., Comunian, T.A., Bezerra, E.O. et al. Barley Malt Esterification after Ultrasound and Stearic Acid Treatment: Characterization and Use as Stabilizing Agent in Oil-in-Water Emulsions. Food Bioprocess Technol 14, 310–323 (2021). https://doi.org/10.1007/s11947-020-02569-9

Download citation

Keywords

  • FT-IR analysis
  • Energy density
  • X-ray diffraction
  • DSC analysis