Abstract
The phenolic compounds of blackberries extracted with organic solvents cause environmental damage. Therefore, the objective of the present study was to verify if microwave hydrodiffusion and gravity obtain a blackberry extract with a high concentration of phenolic compounds and antioxidant capacity without the addition of any solvent. The results showed that it was possible to reach the objective with 500 W and 10 min of extraction by employing a method that meets green chemistry principles. The extract has a lower cost than the exhaustive method, is microbiologically safe, and is mainly composed of anthocyanins (85%). The presence of 5 anthocyanins and 17 non-anthocyanin phenolic compounds were identified, including hydroxyresveratrol, which was first extracted in blackberries by microwave hydrodiffusion and gravity. The phenolic compound content and antioxidant capacity were lower in the last fractions, which reduced the extraction time to 8 min. The coproduct showed phenolic, antioxidant capacity, and microbiological quality. This study presented a fast, efficient, economical, sustainable, and solvent-free method to extract phenolic compounds from blackberries.
This is a preview of subscription content, access via your institution.








Data Availability
Not applicable.
References
Al Bittar, S., Perino-Issartier, S., Dangles, O., & Chemat, F. (2013). An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chemistry, 141(3), 3268–3272. https://doi.org/10.1016/j.foodchem.2013.05.134.
ANVISA. (2001). Resolução- RDC No 12, de 02 de Janeiro DE 2001.
APHA. (2015). Compendium of methods for the microbiological examination of foods (5th ed.). Washington.
Barcia, M. T., Pertuzatti, P. B., Rodrigues, D., Gómez-Alonso, S., Hermosín-Gutiérrez, I., & Godoy, H. T. (2014). Occurrence of low molecular weight phenolics in Vitis vinifera red grape cultivars and their winemaking by-products from São Paulo (Brazil). Food Research International, 62, 500–513. https://doi.org/10.1016/j.foodres.2014.03.051.
Blum, J., & Fridovich, I. (1983). Superoxide, hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Archives of Biochemistry and Biophysics, 222(1), 35–43. https://doi.org/10.1016/0003-9861(83)90499-X.
Bochi, V. C., Barcia, M. T., Rodrigues, D., Speroni, C. S., Giusti, M. M., & Godoy, H. T. (2014). Polyphenol extraction optimisation from Ceylon gooseberry (Dovyalis hebecarpa) pulp. Food Chemistry, 164(2014), 347–354. https://doi.org/10.1016/j.foodchem.2014.05.031.
Bonomo, L. F., Silva, D. N., Boasquivis, P. F., Paiva, F. A., Guerra, J. F. D. C., Martins, T. A. F., et al. (2014). Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0089933.
Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., & Chemat, F. (2015). Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24, 72–79. https://doi.org/10.1016/j.ultsonch.2014.11.015.
Bozkurt-Cekmer, H., & Davidson, P. M. (2016). Microwaves for microbial inactivation-efficiency and inactivation kinetics. The Microwave Processing of Foods: Second Edition (2nd ed.). Amsterdam: Elsevier Ltd.. https://doi.org/10.1016/B978-0-08-100528-6.00011-5.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(May), 71–94. https://doi.org/10.1016/S0047-2484(78)80101-8.
Cendres, A., Chemat, F., Page, D., Le Bourvellec, C., Markowski, J., Zbrzezniak, M., et al. (2012). Comparison between microwave hydrodiffusion and pressing for plum juice extraction. LWT - Food Science and Technology, 49(2), 229–237. https://doi.org/10.1016/j.lwt.2012.06.027.
Cendres, A., Hoerlé, M., Chemat, F., & Renard, C. M. G. C. (2014). Different compounds are extracted with different time courses from fruits during microwave hydrodiffusion: Examples and possible causes. Food Chemistry, 154(May 2015), 179–186. https://doi.org/10.1016/j.foodchem.2014.01.004.
Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615.
Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies, 41(February), 357–377. https://doi.org/10.1016/j.ifset.2017.04.016.
Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V., & Cravotto, G. (2019). Green extraction of natural products. Origins, current status, and future challenges. TrAC - Trends in Analytical Chemistry, 118, 248–263. https://doi.org/10.1016/j.trac.2019.05.037.
da Silveira, T. L., Zamberlan, D. C., Arantes, L. P., Machado, M. L., da Silva, T. C., de Câmara, D. F., et al. (2018). Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. NeuroToxicology, 67. Elsevier B.V. https://doi.org/10.1016/j.neuro.2018.04.015.
de F Machado, A. P., Pasquel-Reátegui, J. L., Barbero, G. F., & Martínez, J. (2014). Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Research International. https://doi.org/10.1016/j.foodres.2014.12.042.
de Martins, D. L., & Alvarez, H. M. (2010). Carboxylic acid chlorides as arylating agents in the palladium-catalyzed Heck reaction - The Blaser reaction. Revista Virtual de Química, 2(4), 280–297. https://doi.org/10.5935/1984-6835.20100026.
Farias, C. A. A., Moraes, D. P., Lazzaretti, M., Ferreira, D. F., Zabot, G. L., Barin, J. S., Ballus, C. A., & Barcia, M. T. (2021). Microwave hydrodiffusion and gravity as pretreatment for grape dehydration with simultaneous obtaining of high phenolic grape extract. Food Chemistry, 337(August 2020), 127723. https://doi.org/10.1016/j.foodchem.2020.127723.
Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813–8826. https://doi.org/10.3390/molecules15128813.
Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, (August 2001), 0–13. https://doi.org/10.1002/0471142913.faf0102s00.
Gowd, V., Bao, T., Wang, L., Huang, Y., Chen, S., Zheng, X., Cui, S., & Chen, W. (2018). Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chemistry, 269(July), 618–627. https://doi.org/10.1016/j.foodchem.2018.07.020.
Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476(2), 107–112. https://doi.org/10.1016/j.abb.2008.01.028.
Halliwell, B. (2012). Free radicals and antioxidants: Updating a personal view. Nutrition Reviews, 70(5), 257–265. https://doi.org/10.1111/j.1753-4887.2012.00476.x.
Hatami, T., Johner, J. C. F., Zabot, G. L., & Meireles, M. A. A. (2019). Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. Journal of Supercritical Fluids, 144, 39–47. https://doi.org/10.1016/j.supflu.2018.10.003.
Húngaro, H. M., Peña, W. E. L., Silva, N. B. M., Carvalho, R. V., Alvarenga, V. O., & Sant’Ana, A. S. (2014). Food microbiology. Encyclopedia of Agriculture and Food Systems, 3, 213–231. https://doi.org/10.1016/B978-0-444-52512-3.00059-0.
Jiang, L., Belwal, T., Huang, H., Ge, Z., Limwachiranon, J., Zhao, Y., Li, L., Ren, G., & Luo, Z. (2019). Extraction and characterization of phenolic compounds from bamboo shoot shell under optimized ultrasonic-assisted conditions: A potential source of nutraceutical compounds. Food and Bioprocess Technology, 12(10), 1741–1755. https://doi.org/10.1007/s11947-019-02321-y.
Jiménez-Sánchez, C., Lozano-Sánchez, J., Marti, N., Saura, D., Valero, M., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2015). Characterization of polyphenols, sugars, and other polar compounds in persimmon juices produced under different technologies and their assessment in terms of compositional variations. Food Chemistry, 182, 282–291. https://doi.org/10.1016/j.foodchem.2015.03.008.
Kaume, L., Howard, L. R., & Devareddy, L. (2012). The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727. https://doi.org/10.1021/jf203318p.
Lavinas, F. C., Almeida, N. C., Miguel, M. A., Lopes, M. L., & Valiente-Mesquita, V. L. (2006). Estudo da estabilidade química e microbiológica do suco de caju in natura armazenado em diferentes condições de estocagem. Ciência e Tecnologia de Alimentos, 26(4), 875–883. https://doi.org/10.1590/S0101-20612006000400026.
Lee, J., Dossett, M., & Finn, C. E. (2012). Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chemistry, 130(4), 785–796. https://doi.org/10.1016/j.foodchem.2011.08.022.
Leyva-Jiménez, F. J., Lozano-Sánchez, J., Borrás-Linares, I., Arráez-Román, D., & Segura-Carretero, A. (2018). Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Research International, 109(April), 213–222. https://doi.org/10.1016/j.foodres.2018.04.035.
López-Hortas, L., Conde, E., Falqué, E., Domínguez, H., & Torres, M. D. (2019a). Preparation of hydrogels composed of bioactive compounds from aqueous phase of artichoke obtained by MHG technique. Food and Bioprocess Technology, 12(8), 1304–1315. https://doi.org/10.1007/s11947-019-02301-2.
López-Hortas, L., Conde, E., Falqué, E., Domínguez, H., & Torres, M. D. (2019b). Recovery of aqueous phase of broccoli obtained by MHG technique for development of hydrogels with antioxidant properties. Lwt, 107(March), 98–106. https://doi.org/10.1016/j.lwt.2019.02.081.
Machado, A. P. d. F., Rueda, M., Barbero, G. F., Martín, Á., Cocero, M. J., & Martínez, J. (2018a). The Journal of Supercritical Fluids co-precipitation of anthocyanins of the extract obtained from blackberry residues by pressurized antisolvent process. The Journal of Supercritical Fluids, 137(January), 81–92. https://doi.org/10.1016/j.supflu.2018.03.013.
Machado, M. L., Arantes, L. P., Gubert, P., Zamberlan, D. C., Da Silva, T. C., Da Silveira, T. L., et al. (2018b). Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways. PLoS ONE, 13(9), 1–20. https://doi.org/10.1371/journal.pone.0204023.
Moraes, D. P., Lozano-sánchez, J., Machado, M. L., Vizzotto, M., Lazzaretti, M., Leyva-jimenez, F. J. J., et al. (2020). Characterization of a new blackberry cultivar BRS Xingu: Chemical composition, phenolic compounds, and antioxidant capacity in vitro and in vivo. Food Chemistry, 322(126783), 1–9. https://doi.org/10.1016/j.foodchem.2020.126783.
Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586o.
Pavlović, A. V., Papetti, A., Zagorac, D. Č. D., Gašić, U. M., Mišić, D. M., Tešić, Ž. L., & Natić, M. M. (2016). Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Industrial Crops and Products, 87, 304–314. https://doi.org/10.1016/j.indcrop.2016.04.052.
Périno-Issartier, S., Zill-e-Huma, A.-V., & M., & Chemat, F. (2011). Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food and Bioprocess Technology, 4(6), 1020–1028. https://doi.org/10.1007/s11947-010-0438-x.
Périno-Issartier, S., Pierson, J. T., Ruiz, K., Cravotto, G., & Chemat, F. (2016). Laboratory to pilot scale: Microwave extraction for polyphenols lettuce. Food Chemistry, 204(February), 108–114. https://doi.org/10.1016/j.foodchem.2016.02.088.
Quatrin, A., Pauletto, R., Maurer, L. H., Minuzzi, N., Nichelle, S. M., Carvalho, J. F. C., et al. (2019). Characterization and quantification of tannins, flavanols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: a comparison between Myrciaria trunciflora and M. jaboticaba. Journal of Food Composition and Analysis. https://doi.org/10.1016/j.jfca.2019.01.018.
Ravi, H. K., Breil, C., Vian, M. A., Chemat, F., & Venskutonis, P. R. (2018). Biorefining of bilberry (Vaccinium myrtillus L.) pomace using microwave hydrodiffusion and gravity, ultrasound-assisted, and bead-milling extraction. ACS Sustainable Chemistry and Engineering, 6(3), 4185–4193. https://doi.org/10.1021/acssuschemeng.7b04592.
Reátegui, J. L. P., Machado, A. P. d. F., Barbero, G. F., Rezende, C. A., & Martínez, J. (2014). The Journal of Supercritical Fluids Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO 2 assisted by ultrasound. The Journal of Supercritical Fluids, 94, 223–233. https://doi.org/10.1016/j.supflu.2014.07.019.
Sarneckis, C. J., Dambergs, R. G., Jones, P., Mercurio, M., Herderich, M. J., & Smith, P. A. (2006). Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Australian Journal of Grape and Wine Research, 12(1), 39–49. https://doi.org/10.1111/j.1755-0238.2006.tb00042.x.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1998). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299(1974), 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.
Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., & Bhattacharyya, D. (2012). Analysis, synthesis and design of chemical processes. (P. Hall, Ed.) (4th ed.).
Vian, M. A., Fernandez, X., Visinoni, F., & Chemat, F. (2008). Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. Journal of Chromatography A, 1190(1–2), 14–17. https://doi.org/10.1016/j.chroma.2008.02.086.
Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002.
Wang, H., Zhang, Q., Mujumdar, A. S., Fang, X. M., Wang, J., Pei, Y. P., Wu, W., Zielinska, M., & Xiao, H. W. (2020). High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control, 111(December 2019), 107050. https://doi.org/10.1016/j.foodcont.2019.107050.
Waterhouse, G. I. N., Sun-Waterhouse, D., Su, G., Zhao, H., & Zhao, M. (2017). Spray-drying of antioxidant-rich blueberry waste extracts; interplay between waste pretreatments and spray-drying process. Food and Bioprocess Technology, 10(6), 1074–1092. https://doi.org/10.1007/s11947-017-1880-9.
Zabot, G. L., Bitencourte, I. P., Tres, M. V., & Meireles, M. A. A. (2017). Process intensification for producing powdered extracts rich in bioactive compounds: An economic approach. Journal of Supercritical Fluids, 119, 261–273. https://doi.org/10.1016/j.supflu.2016.10.003.
Zill-e-Huma, A. V. M., Maingonnat, J. F., & Chemat, F. (2009). Clean recovery of antioxidant flavonoids from onions: Optimising solvent free microwave extraction method. Journal of Chromatography A, 1216(45), 7700–7707. https://doi.org/10.1016/j.chroma.2009.09.044.
Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001. Embrapa Clima Temperado donated the blackberry fruit. Capes notices 24/2012 and 11/2009 - Pro-institutional equipment financed the purchase of equipment used in this study. We would like to thank teachers Dr. Félix Alexandre Antunes Soares, Dr. Antonio Segura Carretero, Dr. Nilo Zanatta, and Cristiano Ragagnin de Menezes for granting us the necessary infrastructure to carry out analyses with C. elegans, the identification of anthocyanins, the identification of non-anthocyanin phenolic compounds, and microbiological analyses and Naiara Henning Neuenfeldt for helping with the microbiological analyses.
Funding
The study was supported by the FAPERGS Project N. 17/2551-0000780-8 (Edital 01/2017-ARD) and PROBIC/FAPERGS/UFSM (Edital 007/2018), Fipe Program"Enxoval" CCR (Edital 014/2017, Edital 015/2017, and Edital 002/2018 PRPGP/UFSM).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Code Availability
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moraes, D.P., Machado, M.L., Farias, C.A.A. et al. Effect of Microwave Hydrodiffusion and Gravity on the Extraction of Phenolic Compounds and Antioxidant Properties of Blackberries (Rubus spp.): Scale-Up Extraction. Food Bioprocess Technol 13, 2200–2216 (2020). https://doi.org/10.1007/s11947-020-02557-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-020-02557-z
Keywords
- Green extraction
- Microbiological analysis
- Economic analysis
- Hydroxyresveratrol
- Antioxidant capacity
- Reactive oxygen species