Skip to main content
Log in

Enzymatically Cross-Linked Sodium Caseinate as Techno-Functional Ingredient in Acid-Induced Milk Gels

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sodium caseinate is widely used as techno-functional ingredient in food processing. However, no studies are currently available on applications of enzymatically cross-linked sodium caseinate although such a modification might have a potential to improve its techno-functional properties and thus reduce the amount of protein necessary to achieve the desired product properties. In the present study, aqueous sodium caseinate solutions were cross-linked by microbial transglutaminase to different extents and subsequently spray-dried. These powders were either redissolved in water or added to reconstituted skim milk to compare acid-induced gels from sodium caseinate solutions to gels from milk with added sodium caseinate. Gelation induced by glucono-δ-lactone was studied using time-based oscillation rheology. The maximum storage modulus (G′MAX) of sodium caseinate gels increased with increasing cross-linking extent, whereas enriched milk gels showed a peak in G′MAX at moderate cross-linking extents. Heat treatment of the enriched milk shifted the highest G′MAX to an even lower cross-linking extent. The results show that constituents of complex food matrices as well as processing routes affect the techno-functional properties of modified food proteins such as cross-linked caseins. It was possible to reduce the amount of added protein from 10 to 7.5 g/kg when cross-linked sodium caseinate was used while obtaining milk gels with similar G′MAX and forced syneresis. Future studies should elaborate ways to further improve the properties of cross-linked sodium caseinate to allow for an even greater reduction in protein enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data material can be provided upon request.

References

  • Abbate, R. A., Raak, N., Boye, S., Janke, A., Rohm, H., Jaros, D., & Lederer, A. (2019). Asymmetric flow field flow fractionation for the investigation of caseins cross-linked by microbial transglutaminase. Food Hydrocolloids, 92, 117–124.

    CAS  Google Scholar 

  • Belyakova, L. E., Antipova, A. S., Semenova, M. G., Dickinson, E., Matia Merino, L., & Tsapkina, E. N. (2003). Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: relationship to protein gelation. Colloids and Surfaces B: Biointerfaces, 31(1-4), 31–46.

    CAS  Google Scholar 

  • Bönisch, M. P., Huss, M., Lauber, S., & Kulozik, U. (2007). Yoghurt gel formation by means of enzymatic protein cross-linking during microbial fermentation. Food Hydrocolloids, 21(4), 585–595.

    Google Scholar 

  • Braga, A. L. M., Menossi, M., & Cunha, R. L. (2006). The effect of the glucono-δ-lactone/caseinate ratio on sodium caseinate gelation. International Dairy Journal, 16(5), 389–398.

    CAS  Google Scholar 

  • Bruno, M., Giancone, T., Torrieri, E., Masi, P., & Moresi, M. (2007). Engineering properties of edible transglutaminase cross-linked caseinate-based films. Food and Bioprocess Technology, 1, 393–404.

    Google Scholar 

  • Buchert, J., Ercili Cura, D., Ma, H., Gasparetti, C., Monogioudi, E., Faccio, G., Mattinen, M., Boer, H., Partanen, R., Selinheimo, E., Lantto, R., & Kruus, K. (2010). Crosslinking food proteins for improved functionality. Annual Review of Food Science and Technology, 1(1), 113–138.

    CAS  PubMed  Google Scholar 

  • Chen, L., Li, Y., Han, J., Yuan, D., Lu, Z., & Zhang, L. (2018). Influence of transglutaminase-induced modification of milk protein concentrate (MPC) on yoghurt texture. International Dairy Journal, 78, 65–72.

    CAS  Google Scholar 

  • Dickinson, E., & Matia Merino, L. (2002). Effect of sugars on the rheological properties of acid caseinate-stabilized emulsion gels. Food Hydrocolloids, 16(4), 321–331.

    CAS  Google Scholar 

  • Ercili Cura, D., Lille, M., Partanen, R., Kruus, K., Buchert, J., & Lantto, R. (2010). Effect of Trichoderma reesei tyrosinase on rheology and microstructure of acidified milk gels. International Dairy Journal, 20(12), 830–837.

    CAS  Google Scholar 

  • Ercili-Cura, D., Lille, M., Legland, D., Gaucel, S., Poutanen, K., Partanen, R., & Lantto, R. (2013). Structural mechanisms leading to improved water retention in acid milk gels by use of transglutaminase. Food Hydrocolloids, 30(1), 419–427.

    CAS  Google Scholar 

  • Folk, J. E., & Cole, P. W. (1965). Structural requirements of specific substrates for guinea pig liver transglutaminase. The Journal of Biological Chemistry, 240, 2951–2960.

    CAS  PubMed  Google Scholar 

  • Folk, J. E., & Cole, P. W. (1966). Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. The Journal of Biological Chemistry, 241(23), 5518–5525.

    CAS  PubMed  Google Scholar 

  • Gharibzahedi, S. M. T., & Chronakis, I. S. (2018). Crosslinking of milk proteins by microbial transglutaminase: utilization in functional yogurt products. Food Chemistry, 245, 620–632.

    CAS  PubMed  Google Scholar 

  • Grygorczyk, A., & Corredig, M. (2013). Acid induced gelation of soymilk, comparison between gels prepared with lactic acid bacteria and glucono-δ-lactone. Food Chemistry, 141(3), 1716–1721.

    CAS  PubMed  Google Scholar 

  • Guyot, C., & Kulozik, U. (2011). Effect of transglutaminase-treated milk powders on the properties of skim milk yoghurt. International Dairy Journal, 21(9), 628–635.

    CAS  Google Scholar 

  • HadjSadok, A., Pitkowski, A., Nicolai, T., Benyahia, L., & Moulai-Mostefa, N. (2008). Characterisation of sodium caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering. Food Hydrocolloids, 22(8), 1460–1466.

    CAS  Google Scholar 

  • Hannß, M., Hubbe, N., & Henle, T. (2018). Acid-induced gelation of caseins glycated with lactose–impact of Maillard reaction-based glycoconjugation and protein cross-linking. Journal of Agricultural and Food Chemistry, 66(43), 11477–11485.

    PubMed  Google Scholar 

  • Huppertz, T., Gazi, I., Luyten, H., Nieuwenhuijse, H., Alting, A., & Schokker, E. (2017). Hydration of casein micelles and caseinates: implications for casein micelle structure. International Dairy Journal, 74, 1–11.

    CAS  Google Scholar 

  • IDF. (1979). Caseins and caseinates–determination of protein content (reference method). IDF Standard 92. Brussels: International Dairy Federation.

    Google Scholar 

  • IDF. (1993). Dried milk and dried cream–determination of water content. IDF Standatd 26. Brussels: International Dairy Federation.

    Google Scholar 

  • Jaros, D., Partschefeld, C., Henle, T., & Rohm, H. (2006). Transglutaminase in dairy products: chemistry, physics, applications. Journal of Texture Studies, 37(2), 113–155.

    Google Scholar 

  • Jaros, D., Jacob, M., Otto, C., & Rohm, H. (2010). Excessive cross-linking of caseins by microbial transglutaminase and its impact on physical properties of acidified milk gels. International Dairy Journal, 20(5), 321–327.

    CAS  Google Scholar 

  • Jaros, D., Schwarzenbolz, U., Raak, N., Löbner, J., Henle, T., & Rohm, H. (2014). Cross-linking with microbial transglutaminase: relationship between polymerisation degree and stiffness of acid casein gels. International Dairy Journal, 38(2), 174–178.

    CAS  Google Scholar 

  • Kizzie-Hayford, N., Jaros, D., Zahn, S., & Rohm, H. (2016). Effects of protein enrichment on the microbiological, physicochemical and sensory properties of fermented tiger nut milk. LWT - Food Science and Technology, 74, 319–324.

    CAS  Google Scholar 

  • Kizzie-Hayford, N., Jaros, D., & Rohm, H. (2017). Enrichment of tiger nut milk with microbial transglutaminase cross-linked protein improves the physico-chemical properties of the fermented system. LWT - Food Science and Technology, 81, 226–232.

    CAS  Google Scholar 

  • Kizzie-Hayford, N., Raak, N., Jaros, D., & Rohm, H. (2018). Addition of crude tiger nut protein extract affects stiffness of enzymatically cross-linked dairy proteins. International Journal of Food Science & Technology, 53(8), 1865–1870.

    CAS  Google Scholar 

  • Lauber, S., Henle, T., & Klostermeyer, H. (2000). Relationship between the crosslinking of caseins by transglutaminase and the gel strength of yoghurt. European Food Research and Technology, 210(5), 305–309.

    CAS  Google Scholar 

  • Lin, Y., Kelly, A. L., O’Mahony, J. A., & Guinee, T. P. (2017). Addition of sodium caseinate to skim milk increases nonsedimentable casein and causes significant changes in rennet-induced gelation, heat stability, and ethanol stability. Journal of Dairy Science, 100(2), 908–918.

    CAS  PubMed  Google Scholar 

  • Lucey, J. A., Tamehana, M., Singh, H., & Munro, P. A. (1998). Effect of interactions between denatured whey proteins and casein micelles on the formation and rheological properties of acid skim milk gels. Journal of Dairy Research, 65(4), 555–567.

    CAS  Google Scholar 

  • Montes de Oca-Ávalos, J. M., Borroni, V., Huck-Iriart, C., Navarro, A. S., Candal, R. J., & Herrera, M. L. (2020). Relationship between formulation, gelation kinetics, micro/nanostructure and rheological properties of sodium caseinate nanoemulsion-based acid gels for food applications. Food and Bioprocess Technology, 13(2), 288–299.

    Google Scholar 

  • Nguyen, N. H. A., Wong, M., Guyomarc’h, F., Havea, P., & Anema, S. G. (2014). Effects of non-covalent interactions between the milk proteins on the rheological properties of acid gels. International Dairy Journal, 37(2), 57–63.

    CAS  Google Scholar 

  • Nieuwland, M., Bouwman, W. G., Bennink, M. L., Silletti, E., & de Jongh, H. H. J. (2015). Characterizing length scales that determine the mechanical behavior of gels from crosslinked casein micelles. Food Biophysics, 10(4), 416–427.

    Google Scholar 

  • O’Regan, J., & Mulvihill, D. M. (2011). Caseins and caseinates, Industrial production, compositional standards, specifications, and regulatory aspects. In J. W. Fuquay, P. F. Fox, & P. L. H. McSweeney (Eds.), Encyclopedia of Dairy Science (2nd ed., pp. 855–863). San Diego: Academic Press.

    Google Scholar 

  • Parker, E. A., Donato, L., & Dalgleish, D. G. (2005). Effects of added sodium caseinate on the formation of particles in heated milk. Journal of Agricultural and Food Chemistry, 53(21), 8265–8272.

    CAS  PubMed  Google Scholar 

  • Partanen, R., Autio, K., Myllärinen, P., Lille, M., Buchert, J., & Forssell, P. (2008). Effect of transglutaminase on structure and syneresis of neutral and acidic sodium caseinate gels. International Dairy Journal, 18(4), 414–421.

    CAS  Google Scholar 

  • Peng, N., Gu, L., Li, J., Chang, C., Li, X., Su, Y., & Yang, Y. (2017). Films based on egg white protein and succinylated casein cross-linked with transglutaminase. Food and Bioprocess Technology, 10(8), 1422–1430.

    CAS  Google Scholar 

  • Raak, N., Rohm, H., & Jaros, D. (2017). Cross-linking with microbial transglutaminase: Isopeptide bonds and polymer size as drivers for acid casein gel stiffness. International Dairy Journal, 66, 49–55.

    CAS  Google Scholar 

  • Raak, N., Brehm, L., Abbate, R. A., Henle, T., Lederer, A., Rohm, H., & Jaros, D. (2019a). Self-association of casein studied using enzymatic cross-linking at different temperatures. Food Bioscience, 28, 89–98.

    CAS  Google Scholar 

  • Raak, N., Schöne, C., Rohm, H., & Jaros, D. (2019b). Acid-induced gelation of enzymatically cross-linked caseinate in different ionic milieus. Food Hydrocolloids, 86, 43–49.

    CAS  Google Scholar 

  • Raak, N., Abbate, R. A., Alkhalaf, M., Lederer, A., Rohm, H., & Jaros, D. (2020). Concentration-triggered liquid-to-solid transition of sodium caseinate suspensions as a function of temperature and enzymatic cross-linking. Food Hydrocolloids, 101, 105464.

    CAS  Google Scholar 

  • Rohm, H., & Schmid, W. (1993). Influence of dry-matter fortification on flow properties of yogurt. 1. Evaluation of flow curves. Milchwissenschaft – Milk Science International, 48, 556–560.

    Google Scholar 

  • Romeih, E., & Walker, G. (2017). Recent advances on microbial transglutaminase and dairy application. Trends in Food Science & Technology, 62, 133–140.

    CAS  Google Scholar 

  • Schuldt, S., Raak, N., Jaros, D., & Rohm, H. (2014). Acid-induced formation of soy protein gels in the presence of NaCl. LWT - Food Science and Technology, 57(2), 634–639.

    CAS  Google Scholar 

  • Thomar, P., & Nicolai, T. (2015). Dissociation of native casein micelles induced by sodium caseinate. Food Hydrocolloids, 49, 224–231.

    CAS  Google Scholar 

  • Ünal, G., & Akalin, A. S. (2013). Influence of fortification with sodium-calcium caseinate and whey protein concentrate on microbiological, textural and sensory properties of set-type yoghurt. International Journal of Dairy Technology, 66(2), 264–272.

    Google Scholar 

  • Vasbinder, A. J., Alting, A. C., & de Kruif, K. G. (2003). Quantification of heat-induced casein–whey protein interactions in milk and its relation to gelation kinetics. Colloids and Surfaces B: Biointerfaces, 31(1-4), 115–123.

    CAS  Google Scholar 

Download references

Acknowledgements

Microbial transglutaminase was kindly provided by Ajinomoto Foods Europe SAS (Hamburg, Germany), acid casein powder by Lactoprot Deutschland GmbH (Kaltenkirchen, Germany), and glucono-δ-lactone by Kampffmeyer Nachf. GmbH (Ratzeburg, Germany). Special thanks go to Peggy Geißler for assistance in the experimental work.

Funding

Financial support was received from Deutsche Forschungsgemeinschaft (Bonn, Germany) under the grant number RO3454/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Raak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study required no ethical approvals.

Consent to Participate

All authors gave consent to participate in the study.

Consent for Publication

All authors gave consent to the publication of the study.

Code Availability

There were no codes used in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raak, N., Rohm, H. & Jaros, D. Enzymatically Cross-Linked Sodium Caseinate as Techno-Functional Ingredient in Acid-Induced Milk Gels. Food Bioprocess Technol 13, 1857–1865 (2020). https://doi.org/10.1007/s11947-020-02527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02527-5

Keywords

Navigation