Supercritical CO2 Impregnation of Piper divaricatum Essential Oil in Fish (Cynoscion acoupa) Skin Gelatin Films

Abstract

Films with antioxidant properties using acoupa weakfish skin gelatin (Cynoscion acoupa) were obtained after supercritical solvent impregnation with Piper divaricatum essential oil, in order to produce active food packaging. The impregnation process was carried out using CO2 as supercritical solvent, in an autoclave, at 35 °C, pressures of 100, 150, and 200 bar, and times of 60, 90, and 120 min. The film that presented the highest percentage of antioxidant activity was obtained at 100 bar and 60 min (41.63 ± 1.6%). Scanning electron microscopy (SEM) showed that the essential oil had a heterogeneous distribution within the film, confirming its impregnation. The analysis of Fourier-transform infrared spectroscopy (FTIR) showed that the structural properties of the film changed after the process, in which the interaction of the essential oil and the film proteins was confirmed. Impregnation resulted in a film presenting less tensile resistance, greater flexibility, and greater opacity when compared with control film. Thermogravimetric analysis indicated that thermal stability decreased after the impregnation process. The film obtained presented characteristics that suggest its potential as an active packaging for food products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adilah, Z. A. M., & Hanani, Z. A. N. (2016). Active packaging of fish gelatin films with Morinda citrifolia oil. Food Bioscience, 16, 66–71. https://doi.org/10.1016/j.fbio.2016.10.002.

    Article  CAS  Google Scholar 

  2. Alparslan, Y., & Baygar, T. (2017). Effect of chitosan film coating combined with orange peel essential oil on the shelf life of deepwater pink shrimp. Food and Bioprocess Technology, 10(5), 842–853. https://doi.org/10.1007/s11947-017-1862-y.

    Article  CAS  Google Scholar 

  3. Azeredo, H. M. C. d. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240–1253. https://doi.org/10.1016/j.foodres.2009.03.019.

    Article  CAS  Google Scholar 

  4. Bahram, S., Rezaei, M., Soltani, M., Kamali, A., Ojagh, S. M., & Abdollahi, M. (2014). Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Preservation, 38(3), 1251–1258. https://doi.org/10.1111/jfpp.12086.

    Article  CAS  Google Scholar 

  5. Bezerra, F. W. F., da Costa, W. A., de Oliveira, M. S., de Aguiar Andrade, E. H., & de Carvalho, R. N. (2018). Transesterification of palm pressed-fibers (Elaeis guineensis Jacq.) oil by supercritical fluid carbon dioxide with entrainer ethanol. Journal of Supercritical Fluids, 136, 136–143. https://doi.org/10.1016/j.supflu.2018.02.020.

    Article  CAS  Google Scholar 

  6. Bof, M. J., Jiménez, A., Locaso, D. E., García, M. A., & Chiralt, A. (2016). Grapefruit seed extract and lemon essential oil as active agents in corn starch–chitosan blend films. Food Bioprocess Technology, 9(12), 2033–2045. https://doi.org/10.1007/s11947-016-1789-8.

    Article  CAS  Google Scholar 

  7. Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17–25. https://doi.org/10.1016/j.fbio.2016.07.003.

    Article  CAS  Google Scholar 

  8. Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S., Cristofaro, F., Visai, L., Jiménez, A., & Kenny, J. M. (2017). Functional properties of plasticized bio-based poly(lactic acid) _poly(hydroxybutyrate) (PLA_PHB) films for active food packaging. Food and Bioprocess Technology, 10(4), 770–780. https://doi.org/10.1007/s11947-016-1846-3.

    Article  CAS  Google Scholar 

  9. Capitani, M. I., Matus-Basto, A., Ruiz-Ruiz, J. C., Santiago-García, J. L., Betancur-Ancona, D. A., Nolasco, S. M., Tomás, M. C., & Segura-Campos, M. R. (2016). Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food and Bioprocess Technology, 9(8), 1276–1286. https://doi.org/10.1007/s11947-016-1717-y.

    Article  CAS  Google Scholar 

  10. Casas, L., Mantell, C., & De Ossa, E. J. M. (2017). The Journal of Supercritical Fluids Impregnation of mango leaf extract into a polyester textile using supercritical carbon dioxide. The Journal of Supercritical Fluids, 128, 208–217. https://doi.org/10.1016/j.supflu.2017.05.033.

    Article  CAS  Google Scholar 

  11. Cejudo Bastante, C., Cardoso, L. C., Serrano, C. M., & De Ossa, E. J. M. (2017). The Journal of Supercritical Fluids Supercritical impregnation of food packaging fi lms to provide antioxidant properties. The Journal of Supercritical Fluids, 128, 200–207. https://doi.org/10.1016/j.supflu.2017.05.034.

    Article  CAS  Google Scholar 

  12. Cejudo Bastante, C., Casas Cardoso, L., Fernández Ponce, M. T., Mantell Serrano, C., & Martínez de la Ossa-Fernández, E. J. (2018). Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET/PP food packaging films. Journal of Supercritical Fluids, 140, 196–206. https://doi.org/10.1016/j.supflu.2018.06.008.

    Article  CAS  Google Scholar 

  13. Cejudo Bastante, C., Cran, M. J., Cardoso, L. C., Serrano, C. M., De, E. J. M., & Bigger, S. W. (2019). Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film. The Journal of Supercritical Fluids, 145, 181–191. https://doi.org/10.1016/j.supflu.2018.12.009.

    Article  CAS  Google Scholar 

  14. Cervigón, F., Cipriani, R., Fischer, W., Garibaldi, L., Hendrickx, M., Lemus, A. J., et al. (1993). FAO species identification sheets for fishery purposes: field guide to the commercial marine and brackish-water resources of the northern coast of South America. Rome: FAO.

    Google Scholar 

  15. Chiralt, A., & Atar, L. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51–62. https://doi.org/10.1016/j.tifs.2015.12.001.

    Article  CAS  Google Scholar 

  16. Costa, V. P., Braga, M. E. M., Guerra, J. P., Duarte, A. R. C., Duarte, C. M. M., Leite, E. O. B., Gil, M. H., & de Sousa, H. C. (2010). Development of therapeutic contact lenses using a supercritical solvent impregnation method. Journal of Supercritical Fluids, 52(3), 306–316. https://doi.org/10.1016/j.supflu.2010.02.001.

    Article  CAS  Google Scholar 

  17. Cozmuta, A. M., Turila, A., Apjok, R., Ciocian, A., Cozmuta, L. M., Peter, A., et al. (2015). Preparation and characterization of improved gelatin films incorporating hemp and sage oils. Food Hydrocolloids, 49, 144–155. https://doi.org/10.1016/j.foodhyd.2015.03.022.

    Article  CAS  Google Scholar 

  18. de Oliveira, M. S., Almeida, M. M., Salazar, M. L. A. R., Pires, F. C. S., Bezerra, F. W. F., Cunha, V. M. B., et al. (2018). Potential of medicinal use of essential oils from aromatic plants. In H. ElShemy (Ed.), Potential of essential oils (1st ed.). Lodon: InTech. https://doi.org/10.5772/intechopen.78002.

    Google Scholar 

  19. De Oliveira, M. S., da Cruz, J. N., Silva, S. G., da Costa, W. A., De Sousa, S. H. B., Bezerra, F. W. F., et al. (2019). Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. The Journal of Supercritical Fluids, 145, 74–84. https://doi.org/10.1016/j.supflu.2018.12.003.

    Article  CAS  Google Scholar 

  20. Deng, L., Li, X., Miao, K., Mao, X., Han, M., Li, D., Mu, C., & Ge, L. (2020). Development of disulfide bond crosslinked gelatin/ε-polylysine active edible film with antibacterial and antioxidant activities. Food and Bioprocess Technology, 13(4), 577–588. https://doi.org/10.1007/s11947-020-02420-1.

    Article  CAS  Google Scholar 

  21. Díez-Municio, M., Montilla, A., Herrero, M., Olano, A., & Ibáñez, E. (2011). Supercritical CO2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. The Journal of Supercritical Fluids, 57(1), 73–79. https://doi.org/10.1016/j.supflu.2011.02.001.

    Article  CAS  Google Scholar 

  22. Ejaz, M., Arfat, Y. A., Mulla, M., & Ahmed, J. (2018). Zinc oxide nanorods / clove essential oil incorporated type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113–121. https://doi.org/10.1016/j.fpsl.2017.12.004.

    Article  Google Scholar 

  23. Gómez-estaca, J., Bravo, L., Gómez-Guillén, M. C., Alemán, A., & Montero, P. (2009). Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 112(1), 18–25. https://doi.org/10.1016/j.foodchem.2008.05.034.

    Article  CAS  Google Scholar 

  24. Goñi, M. L., Gañán, N. A., Strumia, M. C., & Martini, R. E. (2016). Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. The Journal of Supercritical Fluids, 111, 28–35. https://doi.org/10.1016/j.supflu.2016.01.012.

    Article  CAS  Google Scholar 

  25. Goñi, M. L., Gañán, N. A., Barbosa, S. E., Strumia, M. C., & Martini, R. E. (2017). CO2 -assisted impregnation of LDPE / sepiolite nanocomposite fi lms with insecticidal terpene ketones: Impregnation yield, crystallinity and mechanical properties assessment. The Journal of Supercritical Fluids, 130, 337–346. https://doi.org/10.1016/j.supflu.2017.06.013.

    Article  CAS  Google Scholar 

  26. Guerrero, P., Hanani, Z. A. N., Kerry, J. P., & Caba, K. D. (2011). Characterization of soy protein-based films prepared with acids and oils by compression. Journal of Food Engineering, 107(1), 41–49. https://doi.org/10.1016/j.jfoodeng.2011.06.003.

    Article  CAS  Google Scholar 

  27. Hoque, S., Benjakul, S., & Prodpran, T. (2011). Effects of partial hydrolysis and plasticizer content on the properties of film from cuttle fish ( Sepia pharaonis ) skin gelatin. Food Hydrocolloids, 25(1), 82–90. https://doi.org/10.1016/j.foodhyd.2010.05.008.

    Article  CAS  Google Scholar 

  28. IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - Brazilian Institute of Environment and Renewable Natural Resources). (2000–2007). Estatística da pesca no Brasil: Grandes regiões e unidades da federação. Dados da pesca 2000-2007. Accessed 13 July 2020 https://www.ibama.gov.br/biodiversidade-aquatica/gestao-pesqueira/estatistica-pesqueira.

  29. Li, J., Miao, J., Wu, J., Chen, S., & Zhang, Q. (2014). Preparation and characterization of active gelatin-based fi lms incorporated with natural antioxidants. Food Hydrocolloids, 37, 166–173. https://doi.org/10.1016/j.foodhyd.2013.10.015.

    Article  CAS  Google Scholar 

  30. Li, M., Zhang, F., Liu, Z., Guo, X., Wu, Q., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 11(9), 1695–1702. https://doi.org/10.1007/s11947-018-2134-1.

    Article  CAS  Google Scholar 

  31. Limpisophon, K., Tanaka, M., & Osako, K. (2010). Characterisation of gelatin-fatty acid emulsion films based on blue shark (Prionace glauca) skin gelatin. Food Chemistry, 122(4), 1095–1101. https://doi.org/10.1016/j.foodchem.2010.03.090.

    Article  CAS  Google Scholar 

  32. Martucci, J. F., Gende, L. B., Neira, L. M., & Ruseckaite, R. A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops & Products, 71, 205–213. https://doi.org/10.1016/j.indcrop.2015.03.079.

    Article  CAS  Google Scholar 

  33. Medeiros, G. R., Ferreira, S. R. S., & Carcio, B. A. M. (2017). High pressure carbon dioxide for impregnation of clove essential oil in LLDPE films. Innovative Food Science & Emerging Technologies, 41, 206–215. https://doi.org/10.1016/j.ifset.2017.03.008.

    Article  CAS  Google Scholar 

  34. Milovanovic, S., Stamenic, M., Markovic, D., Ivanovic, J., & Zizovic, I. (2015). Fluids supercritical impregnation of cellulose acetate with thymol. The Journal of Supercritical Fluids, 97, 107–115. https://doi.org/10.1016/j.supflu.2014.11.011.

    Article  CAS  Google Scholar 

  35. Mir, S. A., Shah, M. A., Dar, B. N., Wani, A. A., Ganai, S. A., & Nishad, J. (2017). Supercritical impregnation of active components into polymers for food packaging applications. Food and Bioprocess Technology, 10(9), 1749–1754. https://doi.org/10.1007/s11947-017-1937-9.

    Article  CAS  Google Scholar 

  36. MPA (Ministério da Pesca e Aquicultura - Ministry of Fisheries and Aquaculture Development) (2010). Boletim estatístico da pesca e aquicultura, Brasil 2008–2009. 99

  37. MPA (Ministério da Pesca e Aquicultura - Ministry of Fisheries and Aquaculture Development) (2012). Boletim estatístico da pesca e aquicultura, Brasil 2010. 128

  38. Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86(3), 325–332. https://doi.org/10.1016/j.foodchem.2003.09.038.

    Article  CAS  Google Scholar 

  39. Nur Hanani, Z. A., Beatty, E., Roos, Y. H., Morris, M. A., & Kerry, J. P. (2012). Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. Journal of Food Engineering, 113(4), 606–614. https://doi.org/10.1016/j.jfoodeng.2012.07.002.

    Article  CAS  Google Scholar 

  40. Orsuwan, A., & Sothornvit, R. (2018). Active banana flour nanocomposite films incorporated with garlic essential oil as multifunctional packaging material for food application. Food and Bioprocess Technology, 11(6), 1199–1210. https://doi.org/10.1007/s11947-018-2089-2.

    Article  CAS  Google Scholar 

  41. Reddy, N. J., Nagoor Vali, D., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering C, 34(1), 115–122. https://doi.org/10.1016/j.msec.2013.08.039.

    Article  PubMed  CAS  Google Scholar 

  42. Rojas, A., Cerro, D., Torres, A., José, M., Guarda, A., & Romero, J. (2015). Supercritical impregnation and kinetic release of 2-nonanone in LLDPE films used for active food packaging. The Journal of Supercritical Fluids, 104, 76–84. https://doi.org/10.1016/j.supflu.2015.04.031.

    Article  CAS  Google Scholar 

  43. Samsalee, N., & Sothornvit, R. (2020). Characterization of food application and quality of porcine plasma protein–based films incorporated with chitosan or encapsulated turmeric oil. Food and Bioprocess Technology, 3(3), 488–500. https://doi.org/10.1007/s11947-020-02411-2.

    Article  CAS  Google Scholar 

  44. Shahbazi, Y. (2017). The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Intehrnational Journal of Biological Macromolecules, 99, 746–753. https://doi.org/10.1016/j.ijbiomac.2017.03.065.

    Article  CAS  Google Scholar 

  45. Shen, Z., Huvard, G. S., Warriner, C. S., Mc, M., Banyasz, J. L., & Mishra, M. K. (2008). CO2 -assisted fiber impregnation. Polymer, 49(6), 1579–1586. https://doi.org/10.1016/j.polymer.2008.01.020.

    Article  CAS  Google Scholar 

  46. Silva, N. d. S., Hernández, E. J. G. P., Araújo, C. D. S. A., Joele, M. R. S. P., & Lourenço, L. D. F. H. (2018). Development and optimization of biodegradable fish gelatin composite film added with buriti oil. CyTA - Journal of Food, 16(1), 340–349. https://doi.org/10.1080/19476337.2017.1406005.

    Article  CAS  Google Scholar 

  47. Solano, A. C. V., & Gante, C. R. (2012). Two different processes to obtain antimicrobial packaging containing natural oils. Food and Bioprocess Technology, 5(6), 2522–2528. https://doi.org/10.1007/s11947-011-0626-3.

    Article  CAS  Google Scholar 

  48. Souza, C. A. D., Dias, A. M. A., Sousa, H. C., & Tadini, C. C. (2014). Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydrate Polymers, 102, 830–837. https://doi.org/10.1016/j.carbpol.2013.10.082.

    Article  PubMed  CAS  Google Scholar 

  49. Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25(6), 1509–1596. https://doi.org/10.1063/1.555991.

    Article  CAS  Google Scholar 

  50. Theerawitayaart, W., Prodpran, T., & Benjakul, S. (2019). Properties of films from fish gelatin prepared by molecular modification and direct addition of oxidized linoleic acid. Food Hydrocolloids, 88, 291–300. https://doi.org/10.1016/j.foodhyd.2018.10.022.

    Article  CAS  Google Scholar 

  51. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571–1579. https://doi.org/10.1016/j.foodchem.2012.03.094.

    Article  PubMed  CAS  Google Scholar 

  52. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fi sh gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids, 41, 33–43. https://doi.org/10.1016/j.foodhyd.2014.03.015.

    Article  CAS  Google Scholar 

  53. Tongnuanchan, P., Benjakul, S., Prodpran, T., & Nilsuwan, K. (2015). Emulsion film based on fish skin gelatin and palm oil: physical, structural and thermal properties. Food Hydrocolloids, 48, 248–259. https://doi.org/10.1016/j.foodhyd.2015.02.025.

    Article  CAS  Google Scholar 

  54. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2016). Mechanical, thermal and heat sealing properties of fi sh skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocolloids, 56, 93–107. https://doi.org/10.1016/j.foodhyd.2015.12.005.

    Article  CAS  Google Scholar 

  55. Torres, A., Romero, J., Macan, A., Guarda, A., & José, M. (2014). Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. The Journal of Supercritical Fluids, 85, 41–48. https://doi.org/10.1016/j.supflu.2013.10.011.

    Article  CAS  Google Scholar 

  56. Varona, S., Rodríguez-Rojo, S., Martín, Á., Cocero, M. J., & Duarte, C. M. M. (2011). Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. Journal of Supercritical Fluids, 58(2), 313–319. https://doi.org/10.1016/j.supflu.2011.06.003.

    Article  CAS  Google Scholar 

  57. Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2017). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food and Bioprocess Technology, 10(3), 503–511. https://doi.org/10.1007/s11947-016-1833-8.

    Article  CAS  Google Scholar 

  58. Weidner, E. (2018). Impregnation via supercritical CO2–what we know and what we need to know. Journal of Supercritical Fluids, 134, 220–227. https://doi.org/10.1016/j.supflu.2017.12.024.

    Article  CAS  Google Scholar 

  59. Wu, J., Sun, X., Guo, X., Ge, S., & Zhang, Q. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185–192. https://doi.org/10.1016/j.aaf.2017.06.004.

    Article  Google Scholar 

  60. Wu, J., Sun, X., Guo, X., Ji, M., Wang, J., Cheng, C., Chen, L., et al. (2018). Physicochemical, Antioxidant, In Vitro Release, and Heat Sealing Properties of Fish Gelatin Films Incorporated with β-Cyclodextrin/Curcumin Complexes for Apple Juice Preservation. Food and Bioprocess Technology, 11, 447–461. https://doi.org/10.1007/s11947-017-2021-1.

  61. Ye, Y., Zhu, M., Miao, K., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial gelatin-based edible films by incorporation of trans-anethole/β-cyclodextrin inclusion complex. Food and Bioprocess Technology, 10(10), 1844–1853. https://doi.org/10.1007/s11947-017-1954-8.

    Article  CAS  Google Scholar 

  62. Zhang, X., Ma, L., Yu, Y., Zhou, H., Guo, T., Dai, H., & Zhang, Y. (2019). Physico-mechanical and antioxidant properties of gelatin fi lm from rabbit skin incorporated with rosemary acid. Food Packaging and Shelf Life, 19(2), 121–130. https://doi.org/10.1016/j.fpsl.2018.12.006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Graduate Program in food Science and Technology (PPGCTA/Federal University of Para-UFPA) and the LABNANO-AMAZON/UFPA network for the support for this paper. The author Dr Mozaniel Santana de Oliveira thanks PCI-MCTIC/MPEG as well as CNPq for the scholarship process number: 302203/2020-6.

Funding

This study was financed in part by the Coordination of Improvement of Higher Level Personnel—Brazil (CAPES)—Finance Code 001—and by the National Council for Scientific and Technological Development (CNPq)—Approved Project/Number 469101/2014-8.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gilciane Américo Albuquerque.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, G.A., Bezerra, F.W.F., de Oliveira, M.S. et al. Supercritical CO2 Impregnation of Piper divaricatum Essential Oil in Fish (Cynoscion acoupa) Skin Gelatin Films. Food Bioprocess Technol 13, 1765–1777 (2020). https://doi.org/10.1007/s11947-020-02514-w

Download citation

Keywords

  • Supercritical solvent impregnation
  • Active films
  • Cynoscion acoupa
  • Piper divaricatum
  • Carbon dioxide