Skip to main content

Advertisement

Log in

Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

High hydrostatic pressure (HHP) processing has been proposed as an innovative tool to induce the secondary metabolism of fresh produce, inducing the accumulation of health-promoting compounds. In the present study, the effect of HHP applied to whole carrots only for the time needed to reach 60 or 100 MPa (come-up time, CUT) on the content of free and bound phenolics immediately after processing and during storage (3 d at 15 °C) was evaluated. In addition, variables such as the phenylalanine ammonia-lyase (PAL) activity as well as the respiration rate and volatile organic compounds (VOCs) production (related with ethylene) were determined during storage. As an immediate response to HHP, samples treated at 100 MPa showed increases in the content of free [5-O-caffeoylquinic acid (63.9%) and 3,4-di-O-feruloylquinic acid (228.6%)] and bound [p-coumaric acid (82.6%)] phenolics. Furthermore at 1 day, samples treated at 60 MPa showed accumulation of free phenolics [4,5-di-O-caffeoylquinic acid (60.2%), and isocoumarin (98.9%)], whereas samples treated at 100 MPa showed increases of 5-O-caffeoylquinic acid (291.2%) and 3,4-di-O-feruloylquinic acid (466.1%). At 2 days of storage, whole carrots treated at 60 MPa showed accumulation of bound phenolics [rutin (85.5%) and p-coumaric acid (214.7%)], whereas at 3 days 100 MPa samples showed higher quercetin (371.2%). During storage, samples treated at 60 and 100 MPa showed higher respiration rate, and ethylene production, respectively. The main physiological changes induced by HHP in carrots are summarized in a physiological model. HHP-treated carrots could be used as fresh food or as raw material to produce functional food and beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Camacho, M., Welti-Chanes, J., & Jacobo-Velázquez, D. A. (2019). Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrasonics Sonochemistry, 50, 289–301.

    Article  PubMed  CAS  Google Scholar 

  • Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, 837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cuéllar-Villarreal, M.d. R., Ortega-Hernández, E., Becerra-Moreno, A., Welti-Chanes, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2016). Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biology and Technology, 119, 18–26.

  • Dörnenburg, H., & Knorr, D. (1997). Evaluation of elicitor-and high-pressure-induced enzymatic browning utilizing potato (Solanum tuberosum) suspension cultures as a model system for plant tissues. Journal of Agricultural and Food Chemistry, 45(10), 4173–4177.

    Article  Google Scholar 

  • Elizondo-Montemayor, L., Ramos-Parra, P. A., Jacobo-Velázquez, D. A., Treviño-Saldaña, N., Marín-Obispo, L. M., Ibarra-Garza, I. P., García-Amezquita, L. E., Del Follo-Martínez, A., Welti-Chanes, J., & Hernández-Brenes, C. (2020). High hydrostatic pressure stabilized micronutrients and shifted dietary fibers, from insoluble to soluble, producing a low-glycemic index mango pulp. CyTA-Journal of Food, 18(1), 203–215.

    Article  CAS  Google Scholar 

  • Formica-Oliveira, A. C., Martínez-Hernández, G. B., Aguayo, E., Gómez, P. A., Artés, F., & Artés-Herández, F. (2017). A functional smoothie from carrots with induced enhanced phenolic content. Food and Bioprocess Technology, 10(3), 491–502.

    Article  CAS  Google Scholar 

  • Gastélum-Estrada, A., Hurtado-Romero, A., Santacruz, A., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2020). Sanitizing after fresh-cutting carrots reduces the wound-induced accumulation of phenolic antioxidants compared to sanitizing before fresh-cutting. Journal of the Science of Food and Agriculture, Accepted Author Manuscript. https://doi.org/10.1002/jsfa.10555.

  • Gómez-Maqueo, A., Ortega-Hernández, É., Serrano-Sandoval, S. N., Jacobo-Velázquez, D. A., García-Cayuela, T., Cano, M. P., & Welti-Chanes, J. (2020a). Addressing key features involved in bioactive extractability of vigor prickly pears submitted to high hydrostatic pressurization. Journal of Food Process Engineering, 43(1), e13202.

    Article  Google Scholar 

  • Gómez-Maqueo, A., Welti-Chanes, J., & Cano, M. P. (2020b). Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: a dynamic microstructural analysis based on prickly pear cells. Food Research International, 130, 108909.

    Article  PubMed  Google Scholar 

  • Gonzalez, M. E., Anthon, G. E., & Barrett, D. M. (2010). Onion cells after high pressure and thermal processing: comparison of membrane integrity changes using different analytical methods and impact on tissue texture. Journal of Food Science, 75(7), E426–E432.

    Article  PubMed  CAS  Google Scholar 

  • González-Aguilar, G. A., Blancas-Benítez, F. J., & Sáyago-Ayerdi, S. G. (2017). Polyphenols associated with dietary fibers in plant foods: molecular interactions and bioaccessibility. Current Opinion in Food Science, 13, 84–88.

    Article  Google Scholar 

  • Gosavi, N. S., Salvi, D., & Karwe, M. V. (2019). High pressure-assisted infusion of calcium into baby carrots part II: influence of process variables on β-carotene extraction and color of the baby carrots. Food and Bioprocess Technology, 12(4), 613–624.

    Article  CAS  Google Scholar 

  • Guardiola-Márquez, C. E., Santana-Gálvez, J., & Jacobo-Velázquez, D. A. (2020). Association of dietary fiber to food components. In J. Welti-Chanes, S. Serna-Saldívar, O. Campanella, & V. Tejada-Ortigaza (Eds.), Science and Technology of Fibers in food systems (pp. 45–70). Cham: Springer.

    Chapter  Google Scholar 

  • Hernández-Carrión, M., Vázquez-Gutiérrez, J. L., Hernando, I., & Quiles, A. (2014). Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”. Journal of Food Science, 79(1), C32–C38.

    Article  PubMed  Google Scholar 

  • Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2012). An alternative use of horticultural crops: Stressed plants as biofactories of bioactive phenolic compounds. Agriculture, 2(3), 259–271.

    Article  Google Scholar 

  • Jacobo-Velázquez, D. A., Martínez-Hernández, G., Rodríguez, S. C., Cao, C. M., & Cisneros-Zevallos, L. (2011). Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry, 59(12), 6583–6593.

    Article  PubMed  Google Scholar 

  • Jacobo-Velázquez, D. A., González-Agüero, M., & Cisneros-Zevallos, L. (2015). Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Scientific Reports, 5(1), 8608.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobo-Velázquez, D. A., del Rosario Cuéllar-Villarreal, M., Welti-Chanes, J., Cisneros-Zevallos, L., Ramos-Parra, P. A., & Hernández-Brenes, C. (2017). Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science & Technology, 60, 80–87.

    Article  Google Scholar 

  • Kim, T., Gil, B., Kim, C., & Cho, Y. (2017). Enrichment of phenolics in harvested strawberries by high-pressure treatment. Food and Bioprocess Technology, 10(1), 222–227.

    Article  CAS  Google Scholar 

  • Klug, T. V., Martínez-Hernández, G. B., Collado, E., Artés, F., & Artés-Hernández, F. (2018). Effect of microwave and high-pressure processing on quality of an innovative broccoli hummus. Food and Bioprocess Technology, 11(8), 1464–1477.

    Article  CAS  Google Scholar 

  • Liu, R. H. (2013). Dietary bioactive compounds and their health implications. Journal of Food Science, 78(s1), A18–A25.

    Article  PubMed  CAS  Google Scholar 

  • López-Gámez, G., Elez-Martínez, P., Martín-Belloso, O., & Soliva-Fortuny, R. (2020). Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: effects on cell viability and quality attributes. Innovative Food Science & Emerging Technologies, 59, 102252.

    Article  Google Scholar 

  • Morales-de la Peña, M., Salinas-Roca, B., Escobedo-Avellaneda, Z., Martín-Belloso, O., & Welti-Chanes, J. (2018). Effect of high hydrostatic pressure and temperature on enzymatic activity and quality attributes in mango puree varieties (cv. Tommy Atkins and Manila). Food and Bioprocess Technolology, 11(6), 1211–1221.

    Article  Google Scholar 

  • Ortega, V. G., Ramírez, J. A., Velázquez, G., Tovar, B., Mata, M., & Montalvo, E. (2013). Effect of high hydrostatic pressure on antioxidant content of 'Ataulfo' mango during postharvest maturation. Food Science and Technology, 33(3), 561–568.

    Article  Google Scholar 

  • Ortega-Hernández, E., Nair, V., Welti-Chanes, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2019). Wounding and UVB light synergistically induce the biosynthesis of phenolic compounds and ascorbic acid in red prickly pears (Opuntia ficus-indica cv. Rojo vigor). International Journal of Molecular Sciences, 20(21), 5327.

  • Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 76(1), R6–R15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patras, A., Brunton, N., Da Pieve, S., Butler, F., & Downey, G. (2009a). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, 10(1), 16–22.

    Article  CAS  Google Scholar 

  • Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009b). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313.

    Article  CAS  Google Scholar 

  • Préstamo, G., & Arroyo, G. (1998). High hydrostatic pressure effects on vegetable structure. Journal of Food Science, 63(5), 878–881.

    Article  Google Scholar 

  • Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Alvarez-Parrilla, E., de la Rosa, L. A., González-Córdoba, A. F., & González-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5(6), 1063–1072.

    Article  Google Scholar 

  • Ramos-Parra, P. A., García-Salinas, C., Rodríguez-López, C. E., García, N., García-Rivas, G., Hernández-Brenes, C., & de la Garza, R. I. D. (2019). High hydrostatic pressure treatments trigger de novo carotenoid biosynthesis in papaya fruit (Carica papaya cv. Maradol). Food Chemistry, 277, 362–372.

    Article  PubMed  CAS  Google Scholar 

  • Rojo, M. C., Cristiani, M., Szerman, N., Gonzalez, M. L., Lerena, M. C., Mercado, L. A., & Combina, M. (2019). Reduction of Zygosaccharomyces rouxii population in concentrated grape juices by thermal pasteurization and hydrostatic high pressure processing. Food and Bioprocess Technology, 12(5), 781–788.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., Jacobo-Velázquez, D. A., Torres, J. A., & Welti-Chanes, J. (2017). Microstructural and physiological changes in plant cell induced by pressure: Their role on the availability and pressure-temperature stability of phytochemicals. Food Engineering Reviews, 9(4), 314–334.

    Article  CAS  Google Scholar 

  • Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1–2), 95–112.

    Article  Google Scholar 

  • Venkatachalam, K., & Meenune, M. (2012). Changes in physiochemical quality and browning related enzyme activity of longkong fruit during four different weeks of on-tree maturation. Food Chemistry, 131(4), 1437–1442.

    Article  CAS  Google Scholar 

  • Viacava, F., Santana-Gálvez, J., Heredia-Olea, E., Pérez-Carrillo, E., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2020). Sequential application of postharvest wounding stress and extrusion as an innovative tool to increase the concentration of free and bound phenolics in carrots. Food Chemistry, 307, 125551.

    Article  PubMed  Google Scholar 

  • Yu, J., Engeseth, N. J., & Feng, H. (2016). High intensity ultrasound as an abiotic elicitor—Effects on antioxidant capacity and overall quality of romaine lettuce. Food and Bioprocess Technology, 9(2), 262–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ph.D. Zamantha Escobedo-Avellaneda for the valuable support on the use of HHP equipment.

Funding

This study was supported by funds from Tecnologico de Monterrey (Bioprocess Research Group; Emerging Technologies and Molecular Nutrition Research Group). Author F.V. acknowledges CONACYT’s scholarship #467046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Jacobo-Velázquez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viacava, F., Ortega-Hernández, E., Welti-Chanes, J. et al. Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots. Food Bioprocess Technol 13, 1717–1727 (2020). https://doi.org/10.1007/s11947-020-02512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02512-y

Keywords

Navigation