Rotating-Pulsed Fluidized Bed Drying of Okara: Evaluation of Process Kinetic and Nutritive Properties of Dried Product

Abstract

Okara is a byproduct of soymilk processing and is rich in fiber and protein. It is underutilized in the food industry as an ingredient owing to its high perishability. The objective of this work was to study the drying of okara in a rotating-pulsed fluidized bed dryer to verify the effect of air temperature (50–90 °C) and frequency of disc rotation (7.5–24.5 Hz) on the inactivation of trypsin inhibitors and the retention of the total phenolic compounds and isoflavones. The drying process was effective in drying this cohesive material. The process conditions exhibited no significant effect on the activity of trypsin inhibitors and content of total isoflavones. However, the content of total phenolic compounds was affected by the air temperature, in which the higher retention occurred at 70 °C and 16 Hz. Regarding the conversion of isoflavone classes, the drying process favored the hydrolysis of malonylglycosides and β-glycosides into aglycones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agrahar-Murugkar, D., & Jha, K. (2010). Effect of drying on nutritional and functional quality and electrophoretic pattern of soyflour from sprouted soybean (Glycine max). Journal of Food Science and Technology, 47(5), 482–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Andrade, J. C., Mandarino, J. M. G., Kurozawa, L. E., & Ida, E. I. (2016). The effect of thermal treatment of whole soybean flour on the conversion of isoflavones and inactivation of trypsin inhibitors. Food Chemistry, 194, 1095–1101.

    CAS  PubMed  Google Scholar 

  3. AOAC. (2016). Official methods of analysis (20th ed.). Washington, D.C.: Association of Official Analytical Chemists International.

    Google Scholar 

  4. AOCS. (2009). Sampling and analysis of oilseed by-products. Trypsin inhibitor activity. Champaign: American Oil Chemist’s Society Official Method Ba 12-75.

  5. Barnes, S. (2010). The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphatic Research and Biology, 8(1), 89–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baú, T. R., & Ida, E. I. (2015). Soymilk processing with higher isoflavone aglycone content. Food Chemistry, 183, 161–168.

    PubMed  Google Scholar 

  7. Bootkote, P., Soponronnarit, S., & Prachayawarakorn, S. (2016). Process of producing parboiled rice with different colors by fluidized bed drying technique including tempering. Food and Bioprocess Technology, 9(9), 1574–1586.

    CAS  Google Scholar 

  8. Chien, J. T., Hsieh, H. C., Kao, T. H., & Chen, B. H. (2005). Kinetic model for studying the conversion and degradation of isoflavones during heating. Food Chemistry, 91(3), 425–434.

    CAS  Google Scholar 

  9. Chung, I.-M., Seo, S.-H., Ahn, J.-K., & Kim, S.-H. (2011). Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste. Food Chemistry, 127(3), 960–967.

    CAS  PubMed  Google Scholar 

  10. Croge, C., Felix, D. S., Araújo, P., & Gallina, M. (2018). Okara residue as source of antioxidants against lipid oxidation in milk enriched with omega-3 and bioavailability of bioactive compounds after in vitro gastrointestinal digestion. Journal of Food Science and Technology, 55, 1518–1524.

    PubMed  PubMed Central  Google Scholar 

  11. Dacanal, G. C., Feltre, G., Thomazi, M. G., & Menegalli, F. C. (2016). Effects of pulsating air flow in fluid bed agglomeration of starch particles. Journal of Food Engineering, 181, 67–83.

    CAS  Google Scholar 

  12. Deng, Y., Padilla-Zakour, O., Zhao, Y., & Tao, S. (2015). Boiling on chemical compositions, antinutritional factors, fatty acids, in vitro protein digestibility, and microstructure of buckwheat. Food and Bioprocess Technology, 8(11), 2235–2245.

    CAS  Google Scholar 

  13. Dong, X., Xu, W., Sikes, R. A., & Wu, C. (2013). Combination of low dose of genistein and daidzein has synergistic preventive effects on isogenic human prostate cancer cells when compared with individual soy isoflavone. Food Chemistry, 141(3), 1923–1933.

    CAS  PubMed  Google Scholar 

  14. Fennema, O. R. (1996). Water and ice. In O. R. Fennema (Ed.), Food Chemistry (3rd ed., pp. 17–94). Marcel Deckker: New York.

    Google Scholar 

  15. Gaewsondee, T., & Duangkhamchan, W. (2019). A novel process for preparing instant riceberry using fluidized bed drying assisted with swirling compresse-air: Kinetic aspects. Food and Bioprocess Technology, 12(8), 1422–1434.

    CAS  Google Scholar 

  16. Grizotto, R. K., & Aguirre, J. M. D. (2011). Study of the flash drying of the residue from soymilk processing - " okara". Food Science and Technology, 31(3), 645–653.

    Google Scholar 

  17. Guimarães, R. M., Silva, T. E., Lemes, A. C., Boldrin, M. C. G., Silva, M. A. P., Silva, F. G., & Egea, M. B. (2018). Okara: A soybean by-product as an alternative to enrich vegetable paste. LWT- Food Science and Technology, 92, 593–599.

    Google Scholar 

  18. Guimarães, R. M., Ida, E. I., Falcão, H. G., Rezende, T. A., Silva, J. S., Alves, C. C. F., Silva, M. A. P., & Egea, M. B. (2020). Evaluating technological quality of okara flours obtained by different drying processes. LWT – Food Science and Technology, in press, 109062.

  19. Handa, C. L., Couto, U. R., Vicensoti, A. H., Georgetti, S. R., & Ida, E. I. (2014). Optimization of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. Food Chemistry, 152, 56–65.

    CAS  PubMed  Google Scholar 

  20. Hosokawa, M., Katsukawa, M., Tanaka, H., Fukuda, H., Okuno, S., Tsuda, K., & Iritani, N. (2016). Okara ameliorates glucose tolerance in GK rats. Journal of Clinical Biochemistry and Nutrition, 58(3), 216–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Itaya, Y., Kobayashi, N., & Nakamiya, T. (2010). Okara drying by pneumatically swirling two-phase flow in entrained bed riser with enlarged zone. Drying Technology, 28(8), 972–980.

    CAS  Google Scholar 

  22. Jia, D., Bi, X., Lim, C. J., Sokhansanj, S., & Tsutsumi, A. (2016). Biomass drying in a pulsed fluidized bed without inert bed particles. Fuel, 186, 270–284.

    CAS  Google Scholar 

  23. Kakade, M., Rackis, J., McGhee, J., & Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chemistry, 51, 376–382.

    CAS  Google Scholar 

  24. Lima, F. S., & Ida, E. I. (2014). Optimisation of soybean hydrothermal treatment for the conversion of β-glucoside isoflavones to aglycones. LWT- Food Science and Technology, 56(2), 232–239.

    Google Scholar 

  25. Lima, F. S., Handa, C. L., Fernandes, M., Rodrigues, D., Kurozawa, L. E., & Ida, E. I. (2019). Kinetic modeling of the conversion and losses of isoflaones during soybean soaking. Journal of Food Engineering, 261, 171–177.

    Google Scholar 

  26. López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberry variety O’Neil. Food and Bioprocess Technology, 3(5), 772–777.

    Google Scholar 

  27. Monteiro, N. E. S., Queirós, L. D., Lopes, D. B., Pedro, A. O., & Macedo, G. A. (2018). Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. Journal of Functional Foods, 41, 100–111.

    CAS  Google Scholar 

  28. Muliterno, M. M., Rodrigues, D., de Lima, F. S., Ida, E. I., & Kurozawa, L. E. (2017). Conversion/degradation of isoflavones and color alterations during the drying of okara. LWT- Food Science and Technology, 75, 512–519.

    CAS  Google Scholar 

  29. Nishibori, N., Kishibuchi, R., & Morita, K. (2018). Suppressive effect of okara on intestinal lipid digestion and absorption in mice ingesting high-fat diet. International Journal of Food Sciences and Nutrition, 69(6), 690–695.

    CAS  PubMed  Google Scholar 

  30. Perussello, C. A., Amarante, A. C. C., & Mariani, V. C. (2009). Convective drying kinetics and darkening of okara. Drying Technology, 27(10), 1132–1141.

    CAS  Google Scholar 

  31. Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. Boca Raton: CRC Press.

    Google Scholar 

  32. Rosa, G. S., Marsaioli Jr., A., & Rocha, S. C. S. (2013). Energy analysis of poly-hydroxybutirate (PHB) dryign using a combined microwave/rotating pulsed fluidized bed drying (MW/RPFB) dryer. Drying Technology, 31(7), 795–801.

    Google Scholar 

  33. Salim, N. S. M., Garièpy, Y., & Raghavan, V. (2019). Effects of processing on quality atributes of osmo-dried broccoli stalk slices. Food and Bioprocess Technology, 12(7), 1174–1184.

    Google Scholar 

  34. Samborska, K., Jedlińska, A., Wiktor, A., Derewiaka, D., Wołosiak, R., Matwijczuk, A., Jamróz, W., Skwarczyńska-Maj, K., Kiełczewski, D., Błażowski, Ł., Tułodziecki, M., & Witrowa-Rajchert, D. (2019). The effect of low-temperature spray drying with dehumidified air on phenolic compounds, antioxidant activity, and aroma compounds of rapeseed honey powders. Food and Bioprocess Technology, 12(6), 919–932.

    CAS  Google Scholar 

  35. Silva, B., Souza, M. M., & Badiale-Furlong, E. (2020). Antioxidant and antifungal activity of phenolic compounds and their relation to aflatoxin B1 occurrence in soybeans. Journal of the Science of Food and Agriculture, 100(3), 1256–1264.

    CAS  PubMed  Google Scholar 

  36. Singh, A., Kuila, A., Yadav, G., & Banerjee, R. (2011). Process optimization for the extraction of polyphenols from okara. Food Technology and Biotechnology, 49, 322–328.

    CAS  Google Scholar 

  37. Spagnuolo, C., Russo, G. L., Orhan, I. E., Habtemariam, S., Daglia, M., Sureda, A., Nabavi, S. F., Devi, K. P., Loizzo, M. R., Tundis, R., & Nabavi, S. M. (2015). Genistein and cancer: Current status, challenges, and future directions. Advances in Nutrition, 6(4), 408–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vagadia, B. H., Vanga, S. K., & Raghavan, V. (2017). Inactivation methods of soybean trypsin inhibitor – A review. Trends in Food Science & Technology, 64, 115–125.

    CAS  Google Scholar 

  39. Vanga, S. K., Singh, A., & Raghavan, V. (2018). Changes in soybean trypsin inhibitor by varying pressure and temperature of processing: A molecular modeling study. Innovative Food Science & Emerging Technologies, 49, 31–40.

    CAS  Google Scholar 

  40. Villanueva-Suárez, M., Pérez-Cózar, M., Mateos-Aparicio, I., & Redondo-Cuenca, A. (2016). Potential fat-lowering and prebiotic effects of enzymatically treated okara in high-cholesterol-fed Wistar rat. International Journal of Food Sciences and Nutrition, 67(7), 828–833.

    PubMed  Google Scholar 

  41. Villares, A., Rostagno, M. A., García-Lafuente, A., Guillhamón, E., & Martinez, J. A. (2011). Content and profile of isoflavones in soy-based foods as a function of the production process. Food and Bioprocess Technology, 4(1), 27–38.

    CAS  Google Scholar 

  42. Wachiraphansakul, S., & Devahastin, S. (2007). Drying kinetics and quality of okara dried in a jet spouted bed of sorbent particles. LWT- Food Science and Technology, 40(2), 207–219.

    CAS  Google Scholar 

  43. Walsh, K. A., Kauffman, D. L., Kumar, K. S. V. S., & Neurath, H. (1964). On the structure and function of bovine trypsinogen and trypsin. Proceedings of the National Academy of Sciences of the United States of America, 51, 301–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, H. J., & Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 42(8), 1666–1673.

    CAS  Google Scholar 

  45. Wang, G., Deng, Y., Xu, X., He, X., Zhao, Y., Zou, Y., Liu, Z., & Yue, J. (2016). Optimization of air jet impingement drying of okara using response surface methodology. Food Control, 59, 743–749.

    CAS  Google Scholar 

  46. Wardhani, D. H., Vázquez, J. A., & Pandiella, S. S. (2008). Kinetics of daidzin and genistin transformations and water absorption during soybean soaking at different temperatures. Food Chemistry, 111(1), 13–19.

    CAS  Google Scholar 

  47. Xiao, Y., Zhang, S., Tong, H., & Shi, S. (2018). Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past decades. Phytotherapy Research, 32(3), 384–394.

    CAS  PubMed  Google Scholar 

  48. Yoshiara, L. Y., Madeira, T. B., Delaroza, F., Silva, J. B., & Ida, E. I. (2012). Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design. International Journal of Food Sciences and Nutrition, 63(8), 978–986.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the São Paulo Research Foundation, FAPESP (17/16835-5) and FAEPEX/Unicamp (14759-17), for the financial support. Lazarin, R.A. would like to thank FAEPEX/Unicamp for the master scholarship (2977/16). Kurozawa, L. is a CNPq Research Fellow.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louise Emy Kurozawa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chemical compounds: Daidzein (PubChem CID: 5281708), Daidzin (PubChem CID: 107971), 6”-O-acetyldaidzin (PubChem CID: 156155), 6”-O-malonyldaidzin (PubChem CID: 9913968), Genistein (PubChem CID: 5280961), Genistin (PubChem CID: 5281377), 6"-O-acetylgenistin (PubChem CID: 5315831), 6”-O-malonylgenistin (PubChem CID: 53398685), Glycitein (PubChem CID: 5317750), Glycitin (PubChem CID: 187808), 6”-O-acetylglycitin (PubChem CID: 10228095), malonylglycitin (PubChem CID: 23724657).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lazarin, R.A., Falcão, H.G., Ida, E.I. et al. Rotating-Pulsed Fluidized Bed Drying of Okara: Evaluation of Process Kinetic and Nutritive Properties of Dried Product. Food Bioprocess Technol 13, 1611–1620 (2020). https://doi.org/10.1007/s11947-020-02500-2

Download citation

Keywords

  • Soy pulp
  • Drying
  • Rotating-pulsed fluidized bed dryer
  • Isoflavones
  • Trypsin inhibitors