Skip to main content

Advertisement

Log in

Antimicrobial, Aflatoxin B1 Inhibitory and Lipid Oxidation Suppressing Potential of Anethole-Based Chitosan Nanoemulsion as Novel Preservative for Protection of Stored Maize

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Aflatoxins (AFs) are the most frequent contaminants of maize and maize-based products, and its consumption can cause severe adverse effects to humans and animals. The efficacy of essential oils (EOs) and their bioactive compounds as potential antifungal agents has been well documented against food-borne fungi. This study evaluates the preservative potency of anethole-based chitosan nanoemulsion (Ant-eCsNe) to control deterioration of stored maize samples from fungal infestation, aflatoxin B1 (AFB1) contamination and lipid oxidation. Release study indicated a relatively good sustainable release profile for the encapsulated anethole after 10 days. The Ant-eCsNe showed improved efficacy against A. flavus (AF-LHP-VS8) and other common food-borne moulds and inhibited growth and AFB1 biosynthesis at 0.8 and 0.4 μL/mL, respectively. Ant-eCsNe caused concentration-dependent inhibition of ergosterol content and increased efflux of cellular ions (Ca+2, Mg+2 and K+) and 260 and 280 nm absorbing materials, suggesting damage of fungal plasma membrane. Inhibition of methylglyoxal in fungal cells treated with Ant-eCsNe signifies its novel antiaflatoxigenic mechanism of action. Ant-eCsNe exhibited strong in vitro DPPH and ABTS+• scavenging activity with IC50 value 89.36 and 45.05 μL/mL, respectively, and inhibited lipid oxidation in stored maize samples. Further, Ant-eCsNe exhibited reasonably strong efficacy in preserving maize samples from fungal and AFB1 contamination during in vivo investigations and did not change the sensory attributes as well. Overall results revealed that Ant-eCsNe holds good potential to be applied as food preservative to reduce fungal and aflatoxin contamination causing deterioration of stored maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmadi, Z., Saber, M., Akbari, A., & Mahdavinia, G. R. (2018). Encapsulation of Satureja hortensis L.(Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicology and Environmental Safety, 161, 111–119.

    CAS  PubMed  Google Scholar 

  • Amiri, A., Mousakhani-Ganjeh, A., Amiri, Z., Guo, Y. G., Singh, A. P., & Kenari, R. E. (2020). Fabrication of cumin loaded-chitosan particles: Characterized by molecular, morphological, thermal, antioxidant and anticancer properties as well as its utilization in food system. Food Chemistry, 310, 125821.

    PubMed  Google Scholar 

  • Anitha, A., Deepagan, V. G., Rani, V. D., Menon, D., Nair, S. V., & Jayakumar, R. (2011). Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers, 84(3), 1158–1164.

    CAS  Google Scholar 

  • Avanço, G. B., Ferreira, F. D., Bomfim, N. S., Peralta, R. M., Brugnari, T., Mallmann, C. A., & Machinski Jr., M. (2017). Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control, 73, 806–813.

    Google Scholar 

  • Aydogdu, A., Sumnu, G., & Sahin, S. (2019). Fabrication of gallic acid loaded hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydrate Polymers, 208, 241–250.

    CAS  PubMed  Google Scholar 

  • Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Leggieri, M. C., Brera, C., & Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6(1), 24328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., & Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 54, 310–319.

    CAS  Google Scholar 

  • Bugnicourt, L., & Ladavière, C. (2016). Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Progress in Polymer Science, 60, 1–17.

    CAS  Google Scholar 

  • Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377–399.

    Google Scholar 

  • Castro, M. F. P. M. D., Bragagnolo, N., & Valentini, S. R. D. T. (2002). The relationship between fungi growth and aflatoxin production with ergosterol content of corn grains. Brazilian Journal of Microbiology, 33(1), 22–26.

    Google Scholar 

  • Chaudhari, A. K., Dwivedy, A. K., Singh, V. K., Das, S., Singh, A., & Dubey, N. K. (2019). Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environmental Science and Pollution Research, 26(25), 25414–25431.

    CAS  PubMed  Google Scholar 

  • Chaudhari, A. K., Singh, V. K., Dwivedy, A. K., Das, S., Upadhyay, N., Singh, A., & Dubey, N. K. (2018). Chemically characterised Pimenta dioica (L.) Merr. essential oil as a novel plant based antimicrobial against fungal and aflatoxin B1 contamination of stored maize and its possible mode of action. Natural Product Research, 34, 745–749.

    PubMed  Google Scholar 

  • Chen, Z. Y., Brown, R. L., Damann, K. E., & Cleveland, T. E. (2004). Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathology, 94(9), 938–945.

    CAS  PubMed  Google Scholar 

  • Commission Regulation (EU) No 165/2010, Amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. 2010. Accessed date: 26 February 2010.

  • Contigiani, E. V., Jaramillo-Sánchez, G., Castro, M. A., Gómez, P. L., & Alzamora, S. M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: Fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11(9), 1639–1650.

    CAS  Google Scholar 

  • Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Upadhyay, N., Singh, P., & Dubey, N. K. (2019). Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International Journal of Biological Macromolecules, 133, 294–305.

    CAS  PubMed  Google Scholar 

  • Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014.

    CAS  Google Scholar 

  • Djenane, D., Aïder, M., Yangüela, J., Idir, L., Gómez, D., & Roncalés, P. (2012). Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157: H7 and S. aureus during storage at abuse refrigeration temperature. Meat Science, 92(4), 667–674.

    CAS  PubMed  Google Scholar 

  • Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Kovačević, D. B., Pateiro, M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93–101.

    PubMed  Google Scholar 

  • Donsì, F., Annunziata, M., Sessa, M., & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Science and Technology, 44(9), 1908–1914.

    Google Scholar 

  • Durrani, Y., Ayub, M., Muhammad, A., & Ali, A. (2010). Physicochemical response of apple pulp to chemical preservatives and antioxidant during storage. International Journal of Food Safety, 12, 20–28.

    Google Scholar 

  • Dwivedy, A. K., Singh, V. K., Prakash, B., & Dubey, N. K. (2018). Nanoencapsulated Illicium verum Hook. f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food and Chemical Toxicology, 111, 102–113.

    CAS  PubMed  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628–647.

    CAS  Google Scholar 

  • Fan, X. (2002). Measurement of malonaldehyde in apple juice using GC–MS and a comparison to the thiobarbituric acid assay. Food Chemistry, 77(3), 353–359.

    CAS  Google Scholar 

  • Gahruie, H. H., Ziaee, E., Eskandari, M. H., & Hosseini, S. M. H. (2017). Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydrate Polymers, 166, 93–103.

    Google Scholar 

  • Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2016). Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology, 9(7), 1187–1201.

    CAS  Google Scholar 

  • Gómez, J. V., Tarazona, A., Mateo-Castro, R., Gimeno-Adelantado, J. V., Jiménez, M., & Mateo, E. M. (2018). Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Additives & Contaminants: Part A, 35(8), 1581–1595.

    Google Scholar 

  • Guo, M., Yadav, M. P., & Jin, T. Z. (2017). Antimicrobial edible coatings and films from micro-emulsions and their food applications. International Journal of Food Microbiology, 263, 9–16.

    CAS  PubMed  Google Scholar 

  • Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry, 275, 113–122.

    CAS  PubMed  Google Scholar 

  • Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56.

    CAS  PubMed  Google Scholar 

  • Jayakumar, R., Reis, R. L., & Mano, J. F. (2007). Synthesis and characterization of pH-sensitive thiol-containing chitosan beads for controlled drug delivery applications. Drug Delivery, 14(1), 9–17.

    CAS  PubMed  Google Scholar 

  • Juárez-Morales, L. A., Hernandez-Cocoletzi, H., Chigo-Anota, E., Aguila-Almanza, E., & Tenorio-Arvide, M. G. (2017). Chitosan-aflatoxins B1, M1 interaction: A computational approach. Current Organic Chemistry, 21(28), 2877–2883.

    Google Scholar 

  • Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces, 84(1), 163–171.

    CAS  PubMed  Google Scholar 

  • Kelly, S. L., Lamb, D. C., Corran, A. J., Baldwin, B. C., & Kelly, D. E. (1995). Mode of action and resistance to azole antifungals associated with the formation of 14α-methylergosta-8, 24 (28)-dien-3β, 6α-diol. Biochemical and Biophysical Research Communications, 207(3), 910–915.

    CAS  PubMed  Google Scholar 

  • Kfoury, M., Auezova, L., Greige-Gerges, H., Ruellan, S., & Fourmentin, S. (2014). Cyclodextrin, an efficient tool for trans-anethole encapsulation: Chromatographic, spectroscopic, thermal and structural studies. Food Chemistry, 164, 454–461.

    CAS  PubMed  Google Scholar 

  • Kos, J., Mastilović, J., Hajnal, E. J., & Šarić, B. (2013). Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control, 34(1), 31–34.

    CAS  Google Scholar 

  • Ksouda, G., Sellimi, S., Merlier, F., Falcimaigne-Cordin, A., Thomasset, B., Nasri, M., & Hajji, M. (2019). Composition, antibacterial and antioxidant activities of Pimpinella saxifraga essential oil and application to cheese preservation as coating additive. Food Chemistry, 288, 47–56.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Shukla, R., Singh, P., Prasad, C. S., & Dubey, N. K. (2008). Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innovative Food Science & Emerging Technologies, 9(4), 575–580.

    CAS  Google Scholar 

  • Lim, C. T., Tan, E. P. S., & Ng, S. Y. (2008). Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Applied Physics Letters, 92(14), 141908.

    Google Scholar 

  • Lin, L., Zhu, Y., Thangaraj, B., Abdel-Samie, M. A., & Cui, H. (2018). Improving the stability of thyme essential oil solid liposome by using β-cyclodextrin as a cryoprotectant. Carbohydrate Polymers, 188, 243–251.

    CAS  PubMed  Google Scholar 

  • López-Meneses, A. K., Plascencia-Jatomea, M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mouriño-Pérez, R. R., & Cortez-Rocha, M. O. (2018). Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT-Food Science and Technology, 96, 597–603.

    Google Scholar 

  • Mahuku, G., Nzioki, H. S., Mutegi, C., Kanampiu, F., Narrod, C., & Makumbi, D. (2019). Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Food Control, 96, 219–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros, B. G. D. S., Souza, M. P., Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘Coalho’cheese shelf life. Food and Bioprocess Technology, 7(4), 1088–1098.

    CAS  Google Scholar 

  • Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & De La Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 105(Pt 2), 1358–1368.

    CAS  PubMed  Google Scholar 

  • Newberne, P., Smith, R. L., Doull, J., Goodman, J. I., Munro, I. C., Portoghese, P. S., & Lucas, C. D. (1999). The FEMA GRAS assessment of trans-anethole used as a flavouring substance. Food and Chemical Toxicology, 37(7), 789–811.

    CAS  PubMed  Google Scholar 

  • Nishimwe, K., Wanjuki, I., Karangwa, C., Darnell, R., & Harvey, J. (2017). An initial characterization of aflatoxin B1 contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control, 73, 574–580.

    CAS  Google Scholar 

  • Osorio-Madrazo, A., David, L., Trombotto, S., Lucas, J. M., Peniche-Covas, C., & Domard, A. (2010). Kinetics study of the solid-state acid hydrolysis of chitosan: Evolution of the crystallinity and macromolecular structure. Biomacromolecules, 11(5), 1376–1386.

    CAS  PubMed  Google Scholar 

  • Othman, N., Masarudin, M. J., Kuen, C. Y., Dasuan, N. A., Abdullah, L. C., Jamil, M., & Ain, S. N. (2018). Synthesis and optimization of chitosan nanoparticles loaded with l-ascorbic acid and thymoquinone. Nanomaterials, 8(11), 920.

    PubMed Central  Google Scholar 

  • Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91, 185–192.

    CAS  Google Scholar 

  • Park, P. J., Je, J. Y., & Kim, S. K. (2004). Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydrate Polymers, 55(1), 17–22.

    CAS  Google Scholar 

  • Prakash, B., Kujur, A., Yadav, A., Kumar, A., Singh, P. P., & Dubey, N. K. (2018). Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 89, 1–11.

    CAS  Google Scholar 

  • Prakash, B., Shukla, R., Singh, P., Kumar, A., Mishra, P. K., & Dubey, N. K. (2010). Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. International Journal of Food Microbiology, 142(1-2), 114–119.

    CAS  PubMed  Google Scholar 

  • Prakash, B., Singh, P., Mishra, P. K., & Dubey, N. K. (2012). Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits. International Journal of Food Microbiology, 153(1-2), 183–191.

    CAS  PubMed  Google Scholar 

  • Rammanee, K., & Hongpattarakere, T. (2011). Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food and Bioprocess Technology, 4(6), 1050–1059.

    CAS  Google Scholar 

  • Robledo, N., Vera, P., López, L., Yazdani-Pedram, M., Tapia, C., & Abugoch, L. (2018). Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chemistry, 246, 211–219.

    CAS  PubMed  Google Scholar 

  • Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579–601.

    CAS  PubMed  Google Scholar 

  • Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30(2), 386–392.

    CAS  Google Scholar 

  • Singh, V. K., Das, S., Dwivedy, A. K., Rathore, R., & Dubey, N. K. (2019). Assessment of chemically characterized nanoencapuslated Ocimum sanctum essential oil against aflatoxigenic fungi contaminating herbal raw materials and its novel mode of action as methyglyoxal inhibitor. Postharvest Biology and Technology, 153, 87–95.

    CAS  Google Scholar 

  • Talón, E., Trifkovic, K. T., Nedovic, V. A., Bugarski, B. M., Vargas, M., Chiralt, A., & González-Martínez, C. (2017). Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers, 157, 1153–1161.

    PubMed  Google Scholar 

  • Upadhyay, N., Singh, V. K., Dwivedy, A. K., Das, S., Chaudhari, A. K., & Dubey, N. K. (2018). Cistus ladanifer L. essential oil as a plant based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT-Food Science and Technology, 92, 395–403.

    CAS  Google Scholar 

  • Wei, L., Li, Q., Chen, Y., Zhang, J., Mi, Y., Dong, F., & Guo, Z. (2019). Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydrate Polymers, 206, 493–503.

    CAS  PubMed  Google Scholar 

  • Xu, W. T., Peng, X. L., Luo, Y. B., Wang, J. A., Guo, X., & Huang, K. L. (2009). Physiological and biochemical responses of grapefruit seed extract dip on ‘Redglobe’grape. LWT-Food Science and Technology, 42(2), 471–476.

    CAS  Google Scholar 

  • Ye, Y., Zhu, M., Miao, K., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial gelatin-based edible films by incorporation of trans-anethole/β-cyclodextrin inclusion complex. Food and Bioprocess Technology, 10(10), 1844–1853.

    CAS  Google Scholar 

  • Yoksan, R., Jirawutthiwongchai, J., & Arpo, K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids and Surfaces B: Biointerfaces, 76(1), 292–297.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, CAS, DST-PURSE, Banaras Hindu University for providing laboratory facilities and Indian Institute of Technology, Banaras Hindu University for FTIR, SEM and XRD analysis.

Funding

Anand Kumar Chaudhari is thankful to Council of Scientific and Industrial Research (CSIR) [09/013(0678)/2017-EMR-I], New Delhi, India for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawal Kishore Dubey.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, A.K., Singh, V.K., Das, S. et al. Antimicrobial, Aflatoxin B1 Inhibitory and Lipid Oxidation Suppressing Potential of Anethole-Based Chitosan Nanoemulsion as Novel Preservative for Protection of Stored Maize. Food Bioprocess Technol 13, 1462–1477 (2020). https://doi.org/10.1007/s11947-020-02479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02479-w

Keywords