Skip to main content
Log in

Development of Corn Fiber Gum–Soybean Protein Isolate Double Network Hydrogels Through Synergistic Gelation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Corn fiber gum (CFG)–soybean protein isolate (SPI) double network (DN) hydrogel was fabricated under the action of laccase and D-(+)-gluconic acid δ-lactone (GDL) at room temperature. Time sweep dynamic rheological analysis indicated that laccase and GDL work synergistically to enhance the gel strength of CFG-SPI DN hydrogels. The gel strength of CFG-SPI DN hydrogel was higher than those of hydrogels prepared by either constituent. Uniaxial compression test and texture profile analysis showed that CFG-SPI DN hydrogel integrated the mechanical properties of CFG and SPI networks, whose fracture strain was 20 times higher than that of CFG hydrogel, while the hardness was about twice the value that of SPI hydrogel. Scanning electron microscopy observation confirmed that both CFG and SPI participated in the formation of CFG-SPI DN hydrogel. CFG-SPI DN hydrogel showed a more regular and denser microstructure as compared with hydrogels prepared by single constituent. CFG-SPI DN hydrogels with various mechanical properties, water-holding capacities and microstructures were prepared by controlling the concentrations of CFG and SPI. Among which, CFG-SPI double network hydrogel with 7.0% SPI and 1.0% CFG exhibited the highest hardness and water-holding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CFG:

Corn fiber gum

SPI:

Soybean protein isolate

GDL:

D-(+)-gluconic acid δ-lactone

SPI-SN:

SPI-single network

CFG-SN:

CFG-single network

DN:

Double network

References

  • AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul.

  • Ahmed, E. M. (2015). Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 6(2), 105–121.

    PubMed  CAS  Google Scholar 

  • Alavi, F., Emam-Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi-Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 85, 267–280.

    CAS  Google Scholar 

  • Alting, A. C., de Jongh, H. H., Visschers, R. W., & Simons, J. W. F. (2002). Physical and chemical interactions in cold gelation of food proteins. Journal of Agricultural and Food Chemistry, 50(16), 4682–4689.

    PubMed  CAS  Google Scholar 

  • Ayala-Soto, F. E., Serna-Saldívar, S. O., Pérez-Carrillo, E., & García-Lara, S. (2014). Relationship between hydroxycinnamic profile with gelation capacity and rheological properties of arabinoxylans extracted from different maize fiber sources. Food Hydrocolloids, 39, 280–285.

    CAS  Google Scholar 

  • Baeza, R. I., Carp, D. J., Pérez, O. E., & Pilosof, A. M. R. (2002). κ-Carrageenan—protein interactions: effect of proteins on polysaccharide gelling and textural properties. LWT-Food Science and Technology, 35(8), 741–747.

    CAS  Google Scholar 

  • Berlanga-Reyes, C. M., Carvajal-Millán, E., Lizardi-Mendoza, J., Rascón-Chu, A., Marquez-Escalante, J. A., & Martínez-López, A. L. (2009). Maize arabinoxylan gels as protein delivery matrices. Molecules, 14(4), 1475–1482.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Berlanga-Reyes, C. M., Carvajal-Millan, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., & Rascón-Chu, A. (2011). Enzymatic cross-linking of alkali extracted arabinoxylans: gel rheological and structural characteristics. International Journal of Molecular Sciences, 12(9), 5853–5861.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Caillard, R., Mateescu, M. A., & Subirade, M. (2010). Maillard-type cross-linked soy protein hydrogels as devices for the release of ionic compounds: an in vitro study. Food Research International, 43(10), 2349–2355.

    CAS  Google Scholar 

  • Carvajal-Millan, E., Guigliarelli, B., Belle, V., Rouau, X., & Micard, V. (2005). Storage stability of laccase induced arabinoxylan gels. Carbohydrate Polymers, 59(2), 181–188.

    CAS  Google Scholar 

  • Chen, X., Martin, B. D., Neubauer, T. K., Linhardt, R. J., Dordick, J. S., & Rethwisch, D. G. (1995). Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydrate Polymers, 28(1), 15–21.

    CAS  Google Scholar 

  • De Jong, S., Klok, H. J., & Van de Velde, F. (2009). The mechanism behind microstructure formation in mixed whey protein–polysaccharide cold-set gels. Food Hydrocolloids, 23(3), 755–764.

    Google Scholar 

  • de Oliveira Cardoso, V. M., Cury, B. S. F., Evangelista, R. C., & Gremião, M. P. D. (2017). Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials, 65, 317–333.

    PubMed  CAS  Google Scholar 

  • Deng, C., Liu, Y., Li, J., Yadav, M. P., & Yin, L. (2018). Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment. Food Hydrocolloids, 76, 113–122.

    CAS  Google Scholar 

  • Derkach, S. R., Ilyin, S. O., Maklakova, A. A., Kulichikhin, V. G., & Malkin, A. Y. (2015). The rheology of gelatin hydrogels modified by κ-carrageenan. LWT-Food Science and Technology, 63(1), 612–619.

    CAS  Google Scholar 

  • Funami, T. (2011). Next target for food hydrocolloid studies: texture design of foods using hydrocolloid technology. Food Hydrocolloids, 25(8), 1904–1914.

    CAS  Google Scholar 

  • Gao, X. Q., Kang, Z. L., Zhang, W. G., Li, Y. P., & Zhou, G. H. (2015). Combination of κ-carrageenan and soy protein isolate effects on functional properties of chopped low-fat pork batters during heat-induced gelation. Food and Bioprocess Technology, 8(7), 1524–1531.

    CAS  Google Scholar 

  • Gong, J. P., Katsuyama, Y., Kurokawa, T., & Osada, Y. (2003). Double-network hydrogels with extremely high mechanical strength. Advanced Materials, 15(14), 1155–1158.

    CAS  Google Scholar 

  • Guo, S. T., & Ono, T. (2005). The role of composition and content of protein particles in soymilk on tofu curding by glucono-δ-lactone or calcium sulfate. Journal of Food Science, 70(4), C258–C262.

    CAS  Google Scholar 

  • Guo, J., Jin, Y. C., Yang, X. Q., Yu, S. J., Yin, S. W., & Qi, J. R. (2013). Computed microtomography and mechanical property analysis of soy protein porous hydrogel prepared by homogenizing and microbial transglutaminase cross-linking. Food Hydrocolloids, 31(2), 220–226.

    CAS  Google Scholar 

  • Guo, J., Liu, Y. C., Yang, X. Q., Jin, Y. C., Yu, S. J., Wang, J. M., et al. (2014). Fabrication of edible gellan gum/soy protein ionic-covalent entanglement gels with diverse mechanical and oral processing properties. Food Research International, 62, 917–925.

    CAS  Google Scholar 

  • Guo, C., Zhang, Z., Chen, J., Fu, H., Subbiah, J., Chen, X., & Wang, Y. (2017). Effects of radio frequency heating treatment on structure changes of soy protein isolate for protein modification. Food and Bioprocess Technology, 10(8), 1574–1583.

    CAS  Google Scholar 

  • Hashimoto, S., Shogren, M. D., & Pomeranz, Y. (1987). Cereal pentosans: their estimation and significance. I. Pentosans in wheat and milled wheat products. Cereal Chemistry, 64(1), 30–34.

    CAS  Google Scholar 

  • Hou, J. J., Yang, X. Q., Fu, S. R., Wang, M. P., & Xiao, F. (2016). Preparation of double‐network tofu with mechanical and sensory toughness. International journal of food science & technology, 51(4), 962–969.

  • Izydorczyk, M. S., Biliaderis, C. G., & Bushuk, W. (1990). Oxidative gelation studies of water-soluble pentosans from wheat. Journal of Cereal Science, 11(2), 153–169.

    CAS  Google Scholar 

  • Kocher, P. N., & Foegeding, E. A. (1993). Microcentrifuge-based method for measuring water-holding of protein gels. Journal of Food Science, 58(5), 1040–1046.

    CAS  Google Scholar 

  • Luo, Y., Teng, Z., Wang, X., & Wang, Q. (2013). Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocolloids, 31(2), 332–339.

    CAS  Google Scholar 

  • Luo, Q., Borst, J. W., Westphal, A. H., Boom, R. M., & Janssen, A. E. (2017). Pepsin diffusivity in whey protein gels and its effect on gastric digestion. Food Hydrocolloids, 66, 318–325.

    CAS  Google Scholar 

  • Maltais, A., Remondetto, G. E., & Subirade, M. (2010). Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids, 24(5), 518–524.

    CAS  Google Scholar 

  • Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365–371.

    CAS  Google Scholar 

  • Martínez-López, A. L., Carvajal-Millan, E., Lizardi-Mendoza, J., López-Franco, Y. L., Rascón-Chu, A., Salas-Muñoz, E., Barron, C., & Micard, V. (2011). The peroxidase/H2O2 system as a free radical-generating agent for gelling maize bran arabinoxylans: Rheological and structural properties. Molecules, 16(10), 8410–8418.

    PubMed  PubMed Central  Google Scholar 

  • Martínez-López, A. L., Berlanga-Reyes, E., Micard, V., Rascón-Chu, A., Brown-Bojorquez, F., Sotelo-Cruz, N., et al. (2016). In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria. Carbohydrate Polymers, 144, 76–82.

    PubMed  Google Scholar 

  • Martins, J. T., Bourbon, A. I., Pinheiro, A. C., Souza, B. W., Cerqueira, M. A., & Vicente, A. A. (2013). Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: physical and antimicrobial properties. Food and Bioprocess Technology, 6(8), 2081–2092.

    CAS  Google Scholar 

  • Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J. A., Gardea, A., et al. (2009). Maize processing waste water arabinoxylans: gelling capability and cross-linking content. Food Chemistry, 115(4), 1286–1290.

    Google Scholar 

  • Petruccelli, S., & Anon, M. C. (1995). Soy protein isolate components and their interactions. Journal of Agricultural and Food Chemistry, 43(7), 1762–1767.

    CAS  Google Scholar 

  • Porfiri, M. C., & Wagner, J. R. (2018). Extraction and characterization of soy hull polysaccharide-protein fractions. Analysis of aggregation and surface rheology. Food Hydrocolloids, 79, 40–47.

    CAS  Google Scholar 

  • Qiu, S., Yadav, M. P., Chen, H., Liu, Y., Tatsumi, E., & Yin, L. (2015). Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch. Carbohydrate Polymers, 115, 246–252.

    PubMed  CAS  Google Scholar 

  • Ringgenberg, E., Alexander, M., & Corredig, M. (2013). Effect of concentration and incubation temperature on the acid induced aggregation of soymilk. Food Hydrocolloids, 30(1), 463–469.

    CAS  Google Scholar 

  • Saulnier, L., Vigouroux, J., & Thibault, J. F. (1995). Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydrate Research, 272(2), 241–253.

    PubMed  CAS  Google Scholar 

  • Thevenot, J., Cauty, C., Legland, D., Dupont, D., & Floury, J. (2017). Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chemistry, 223, 54–61.

    PubMed  CAS  Google Scholar 

  • Truong, V. D., & Daubert, C. R. (2000). Comparative study of large strain methods for assessing failure characteristics of selected food gels. Journal of Texture Studies, 31(3), 335–353.

    Google Scholar 

  • Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: a review. Materials Science and Engineering: C, 57, 414–433.

    CAS  Google Scholar 

  • Van Vliet, T., Roefs, S. P. F. M., Zoon, P., & Walstra, P. (1989). Rheological properties of casein gels. Journal of Dairy Research, 56, 529–534.

    Google Scholar 

  • Vilela, J. A. P., Cavallieri, Â. L. F., & Da Cunha, R. L. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum. Food Hydrocolloids, 25(7), 1710–1718.

    Google Scholar 

  • Yang, C., Wang, Y., & Chen, L. (2017). Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids, 62, 21–34.

    CAS  Google Scholar 

  • Yegappan, R., Selvaprithiviraj, V., Amirthalingam, S., & Jayakumar, R. (2018). Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers, 198, 385–400.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Guo, X., Yang, S., Tan, S., Li, X., Dai, H., et al. (2009). Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. Journal of Applied Polymer Science, 112(5), 3063–3070.

    CAS  Google Scholar 

Download references

Funding

This work was funded by the National Science Foundation of China (Project No. 31771934 and 21576072) and the National Key Technologies R&D Program (No. 2016YFD0400804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Yin, L., Li, J. et al. Development of Corn Fiber Gum–Soybean Protein Isolate Double Network Hydrogels Through Synergistic Gelation. Food Bioprocess Technol 13, 511–521 (2020). https://doi.org/10.1007/s11947-020-02412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02412-1

Keywords

Navigation