Skip to main content
Log in

Effects of Extrusion Technology Combined with Enzymatic Hydrolysis on the Structural and Physicochemical Properties of Porous Corn Starch

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effects of the combination of extrusion pretreatment and enzymatic hydrolysis on corn starch are investigated through its microstructural and physicochemical properties. This combined modification resulted in the formation of more pores on the surface of native starches (NS), as revealed by scanning electron microscopy (SEM). Compared with either single-treatment modified starch samples, starch that was bioextruded and treated by enzymatic hydrolysis achieved higher crystallinity, more uniform pore structure, and higher gelatinization temperature than those of native porous starch, as determined by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and differential scanning calorimetry (DSC). Low-temperature nitrogen adsorption experiments showed that the specific surface area (2.52 m2/g), total pore volume (4.53 × 10−3 cm3/g), and average pore size (7.36 nm) of porous starch were significantly increased by bioextrusion combined with enzyme hydrolysis (P < 0.05). The results of hydrolysis degree (DH) also showed that bioextrusion could improve the efficiency of hydrolysis. Starch that was bioextruded followed by enzyme hydrolysis showed the highest adsorption capacity in adsorption tests of adsorption of oil (63.29%), water (162.61%), and methylene blue (6.04%). The present study suggests that the combination of bioextrusion pretreatment and enzymatic hydrolysis is an attractive alternative for preparing porous corn starches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NS:

Native starch

ES:

Extruded starch

EES:

Bioextruded starch

NPS:

Native starch followed by enzyme hydrolysis

EPS:

Extruded starch followed by enzyme hydrolysis

EEPS:

Bioextruded starch followed by enzyme hydrolysis

AM:

Medium-temperature α-amylase

AMG:

Glucoamylase

SEM:

Scanning electron microscopy

OAC:

Adsorption capacity

MB:

Methylene blue

SP:

Swelling power

SOL:

Solubility

XRD:

X-ray diffraction

FTIR:

Fourier-transform infrared spectroscopy

DH:

Hydrolysis degree

References

  • Aggarwal, P., & Dollimore, D. (1998). A thermal analysis investigation of partially hydrolyzed starch. Thermochimica Acta, 319(1–2), 17–25.

    CAS  Google Scholar 

  • Akdogan, H. (1996). Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International, 29(5–6), 423–429.

    Google Scholar 

  • Belingheri, C., Ferrillo, A., & Vittadini, E. (2015a). Porous starch for flavor delivery in a tomato-based food application. Lwt-Food Science and Technology, 60(1), 593–597.

    CAS  Google Scholar 

  • Belingheri, C., Giussani, B., Rodriguez-Estrada, M. T., Ferrillo, A., & Vittadini, E. (2015b). Oxidative stability of high-oleic sunflower oil in a porous starch carrier. Food Chemistry, 166, 346–351.

    PubMed  CAS  Google Scholar 

  • Benavent-Gil, Y., & Rosell, C. M. (2017a). Comparison of porous starches obtained from different enzyme types and levels. Carbohydrate Polymers, 157, 533–540.

    PubMed  CAS  Google Scholar 

  • Benavent-Gil, Y., & Rosell, C. M. (2017b). Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes. International Journal of Biological Macromolecules, 103, 587–595.

    PubMed  CAS  Google Scholar 

  • Bhatnagar, S., & Hanna, M. A. (1994). Extrusion processing conditions for amylose lipid complexing. Cereal Chemistry, 71(6), 587–593.

    CAS  Google Scholar 

  • Chen, G., & Zhang, B. (2012). Hydrolysis of granular corn starch with controlled pore size. Journal of Cereal Science, 56(2), 316–320.

    CAS  Google Scholar 

  • Chen, Y. S., Huang, S. R., Tang, Z. F., Chen, X. W., & Zhang, Z. F. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of alpha-amylase and glucoamylase. Carbohydrate Polymers, 85(1), 272–275.

    CAS  Google Scholar 

  • Chung, H. J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436–447.

    CAS  Google Scholar 

  • Ciardullo, K., Donner, E., Thompson, M. R., & Liu, Q. (2019). Influence of extrusion mixing on preparing lipid complexed pea starch for functional foods. Starch-Starke, 71(7–8), 10.

    Google Scholar 

  • Dura, A., Blaszczak, W., & Rosell, C. M. (2014). Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers, 101, 837–845.

    PubMed  CAS  Google Scholar 

  • Gao, F., Li, D., Bi, C. H., Mao, Z. H., & Adhikari, B. (2013). Application of various drying methods to produce enzymatically hydrolyzed porous starch granules. Drying Technology, 31(13–14), 1627–1634.

    CAS  Google Scholar 

  • Gatt, E., Rigal, L., & Vandenbossche, V. (2018). Biomass pretreatment with reactive extrusion using enzymes: a review. Industrial Crops and Products, 122, 329–339.

    CAS  Google Scholar 

  • Guo, L., Liu, R., Li, X. L., Sun, Y., & Du, X. F. (2015). The physical and adsorption properties of different modified corn starches. Starch-Starke, 67(3–4), 237–246.

    CAS  Google Scholar 

  • Jiang, T. Y., Wu, C., Gao, Y. K., Zhu, W. Q., Wan, L., Wang, Z. Y., et al. (2014). Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug. Drug Development and Industrial Pharmacy, 40(2), 252–259.

    PubMed  CAS  Google Scholar 

  • Juszczak, L., Fortuna, T., & Krok, F. (2003). Non-contact atomic force microscopy of starch granules surface. Part I. Potato and tapioca starches. Starch-Starke, 55(1), 1–7.

    CAS  Google Scholar 

  • Li, J. P., Jiao, A. Q., Deng, L., Rashed, M. M. A., & Jin, Z. Y. (2018). Porous-structured extruded instant noodles induced by the medium temperature—amylase and its effect on selected cooking properties and sensory characteristics. International Journal of Food Science and Technology, 53(10), 2265–2272.

    CAS  Google Scholar 

  • Likhitkar, S., & Bajpai, A. K. (2012). Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydrate Polymers, 87(1), 300–308.

    CAS  Google Scholar 

  • Lin, J. H., Pan, C. L., Singh, H., & Chang, Y. H. (2012). Influence of molecular structural characteristics on pasting and thermal properties of acid-methanol-treated rice starches. Food Hydrocolloids, 26(2), 441–447.

    CAS  Google Scholar 

  • Ma, X. F., Liu, X. Y., Anderson, D. P., & Chang, P. R. (2015). Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chemistry, 181, 133–139.

    PubMed  CAS  Google Scholar 

  • Man, J., Cai, C., Yan, Q., Hu, M., Liu, Q., & Wei, C. (2012). Applications of infrared spectroscopy in the analysis of ordered structure of starch grain. Acta Agronomica Sinica, 38(3), 505–513.

    CAS  Google Scholar 

  • Miao, M., Zhang, T., & Jiang, B. (2009). Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chemistry, 113(4), 1025–1032.

    CAS  Google Scholar 

  • O’Shea, N., Arendt, E., & Gallagher, E. (2014). Enhancing an extruded puffed snack by optimising die head temperature, screw speed and apple pomace inclusion. Food and Bioprocess Technology, 7(6), 1767–1782.

    Google Scholar 

  • Qian, J. Q., Chen, X. Y., Ying, X. X., & Lv, B. F. (2011). Optimisation of porous starch preparation by ultrasonic pretreatment followed by enzymatic hydrolysis. International Journal of Food Science and Technology, 46(1), 179–185.

    CAS  Google Scholar 

  • Raphaelides, S. N., Dimitreli, G., Exarhopoulos, S., Ilia, E., & Koutsomihali, P. (2015). A process designed for the continuous production of starch inclusion complexes on an industrial scale. Food and Bioproducts Processing, 96, 245–255.

    CAS  Google Scholar 

  • Román, L., Martínez, M. M., Rosell, C. M., & Gómez, M. (2015). Effect of microwave treatment on physicochemical properties of maize flour. Food and Bioprocess Technology, 8(6), 1330–1335.

    Google Scholar 

  • Sevenou, O., Hill, S. E., Farhat, I. A., & Mitchell, J. R. (2002). Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 31(1–3), 79–85.

    PubMed  CAS  Google Scholar 

  • Shariffa, Y. N., Karim, A. A., Fazilah, A., & Zaidul, I. S. M. (2009). Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocolloids, 23(2), 434–440.

    CAS  Google Scholar 

  • Tatsumi, H., & Katano, H. (2005). Kinetics of the surface hydrolysis of raw starch by glucoamylase. Journal of Agricultural and Food Chemistry, 53(21), 8123–8127.

    PubMed  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 87(9–10), 1051–1069.

    CAS  Google Scholar 

  • Wang, D. L., Ma, X. B., Yan, L. F., Chantapakul, T., Wang, W. J., Ding, T., et al. (2017). Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: investigation on starch properties and degradation kinetics. Carbohydrate Polymers, 175, 47–54.

    PubMed  CAS  Google Scholar 

  • Wang, S. J., Wang, J. R., Zhang, W., Li, C. L., Yu, J. L., & Wang, S. (2015). Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chemistry, 181, 43–50.

    PubMed  CAS  Google Scholar 

  • Wlodarczyk-Stasiak, M., & Jamroz, J. (2009). Specific surface area and porosity of starch extrudates determined from nitrogen adsorption data. Journal of Food Engineering, 93(4), 379–385.

    CAS  Google Scholar 

  • Wu, Y., Du, X. F., Ge, H. H., & Lv, Z. (2011). Preparation of microporous starch by glucoamylase and ultrasound. Starch-Starke, 63(4), 217–225.

    CAS  Google Scholar 

  • Xie, Y., Li, M. N., Chen, H. Q., & Zhang, B. (2019). Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chemistry, 274, 351–359.

    PubMed  CAS  Google Scholar 

  • Xu, E., Wu, Z., Long, J., Wang, F., Pan, X., Xu, X., et al. (2015). Effect of thermostable α-amylase addition on the physicochemical properties, free/bound phenolics and antioxidant capacities of extruded hulled and whole rice. Food and Bioprocess Technology, 8(9), 1958–1973.

    CAS  Google Scholar 

  • Xu, E. B., Pan, X. W., Wu, Z. Z., Long, J., Li, J. P., Xu, X. M., et al. (2016). Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion. Food Chemistry, 212, 146–154.

    PubMed  CAS  Google Scholar 

  • Xu, E. B., Wu, Z. Z., Ding, T., Ye, X. Q., Jin, Z. Y., & Liu, D. H. (2019). Magnetic (Zn-St)Fe-10(n)0 (n=1, 2, 3, 4) framework of macro-mesoporous biomaterial prepared via green enzymatic reactive extrusion for dye pollutants removal. ACS Applied Materials & Interfaces, 11(46), 43553–43562.

    CAS  Google Scholar 

  • Xu, E. B., Wu, Z. Z., Long, J., Jiao, A. Q., & Jin, Z. Y. (2018). Porous starch-based material prepared by bioextrusion in the presence of zinc and amylase-magnesium complex. ACS Sustainable Chemistry & Engineering, 6(8), 9572–9578.

    CAS  Google Scholar 

  • Yan, X., Wu, Z. Z., Li, M. Y., Yin, F., Ren, K. X., & Tao, H. (2019). The combined effects of extrusion and heat-moisture treatment on the physicochemical properties and digestibility of corn starch. International Journal of Biological Macromolecules, 134, 1108–1112.

    PubMed  CAS  Google Scholar 

  • Yao, W., & Yao, H. (2005). Researches on porous starch II the changes of physical characteristics during porous starch formation. Journal of the Chinese Cereals and Oils Association, 20(1), 17–21.

    CAS  Google Scholar 

  • Ye, J. P., Hu, X. T., Luo, S. J., Liu, W., Chen, J., Zeng, Z. R., et al. (2018). Properties of starch after extrusion: a review. Starch-Starke, 70(11–12), 8.

    Google Scholar 

  • Yu, S., Ma, Y., Menager, L., & Sun, D.-W. (2012). Physicochemical properties of starch and flour from different rice cultivars. Food and Bioprocess Technology, 5(2), 626–637.

    CAS  Google Scholar 

  • Zhang, B., Cui, D. P., Liu, M. Z., Gong, H. H., Huang, Y. J., & Han, F. (2012). Corn porous starch: preparation, characterization and adsorption property. International Journal of Biological Macromolecules, 50(1), 250–256.

    PubMed  CAS  Google Scholar 

  • Zhang, B. J., Li, X. X., Liu, J., Xie, F. W., & Chen, L. (2013). Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocolloids, 31(1), 68–73.

    CAS  Google Scholar 

  • Zhao, A. Q., Yu, L., Yang, M., Wang, C. J., Wang, M. M., & Bai, X. (2018). Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocolloids, 83, 465–472.

    CAS  Google Scholar 

  • Zhu, J. J., Sun, Y. B., Sun, W. Z., Meng, Z. Y., Shi, Q. L., Zhu, X. X., et al. (2019). Calcium ion-exchange cross-linked porous starch microparticles with improved hemostatic properties. International Journal of Biological Macromolecules, 134, 435–444.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National “Thirteenth Five-Year” Plan for Science & Technology Support of China (No.2016YFD0400304), Jiangsu Agriculture Science and Technology Innovation Fund (CX(17)2022), the Science & Technology Pillar Program of Jiangsu Province (BE2018304), and Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology (FM-201904). The authors thank Dr. Ding Kang and Dr. Lei Shi for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyu Jin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Jiao, A., Xu, E. et al. Effects of Extrusion Technology Combined with Enzymatic Hydrolysis on the Structural and Physicochemical Properties of Porous Corn Starch. Food Bioprocess Technol 13, 442–451 (2020). https://doi.org/10.1007/s11947-020-02404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02404-1

Keywords

Navigation