Skip to main content

Advertisement

Log in

The Impact of High-Pressure Processing on the Structure and Sensory Properties of Egg White-Whey Protein Mixture at Acidic Conditions

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aims to unveil the impact of high-pressure processing (HPP) on the structure and sensory properties of the mixture of egg white and whey protein at acidified conditions. Under HPP treatment, we hypothesized that egg white protein can form gel structures and encapsulate or crosslink with the whey protein, thus masking the interaction sites of whey protein with salivary protein and reduce its astringency at pH 3.5. Various characterization techniques, including turbidity measurements, zeta size, optical and scanning microscopy, native and sodium dodecyl sulfate polyacrylamide gel electrophoresis, and Fourier transform infrared spectroscopy, were used to illustrate the structural changes of the proteins and the interactions between the egg white and whey proteins. The results show that HPP treatment at 450 MPa and 600 MPa can induce significant changes to the egg white-whey protein mixture in terms of size, microstructure, secondary structure, and crosslinking. We also confirmed by electrophoresis that the egg white and whey protein form complexes through covalent bonding that feature a molecular weight of ~ 90 kDa under HPP treatment at a pH value of 3.5. Although the egg white forms microgel and may partially encapsulate the whey protein, sensory studies showed such complexation does not reduce the astringency of whey protein at acidified conditions (control astringency score = 9.0). On the contrary, the HPP-treated samples showed a higher astringency (astringency score = 11.1–11.3), possibly due to the exposure of more hydrophobic sites on the proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Awadé, A. C., & Efstathiou, T. (1999). Comparison of three liquid chromatographic methods for egg-white protein analysis. Journal of Chromatography B: Biomedical Sciences and Applications, 723(1–2), 69–74.

    PubMed  Google Scholar 

  • Beecher, J., Drake, M., Luck, P., & Foegeding, E. (2008). Factors regulating astringency of whey protein beverages. Journal of Dairy Science, 91(7), 2553–2560.

    CAS  PubMed  Google Scholar 

  • Bouaouina, H., Desrumaux, A., Loisel, C., & Legrand, J. (2006). Functional properties of whey proteins as affected by dynamic high-pressure treatment. International Dairy Journal, 16(4), 275–284.

    CAS  Google Scholar 

  • Bull, S. P., Hong, Y., Khutoryanskiy, V. V., Parker, J. K., Faka, M., & Methven, L. (2017). Whey protein mouth drying influenced by thermal denaturation. Food Quality and Preference, 56(Pt B), 233–240.

    PubMed  PubMed Central  Google Scholar 

  • Cadesky, L., Walkling-Ribeiro, M., Kriner, K. T., Karwe, M. V., & Moraru, C. I. (2017). Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. Journal of Dairy Science, 100(9), 7055–7070.

    CAS  PubMed  Google Scholar 

  • Carreño-Olejua, R., Hofacker, W. C., & Hensel, O. (2010). High-pressure water-jet technology as a method of improving the quality of post-harvest processing. Food and Bioprocess Technology, 3(6), 853–860.

    Google Scholar 

  • Carvalho, E., Mateus, N., Plet, B., Pianet, I., Dufourc, E., & De Freitas, V. (2006). Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. Journal of Agricultural and Food Chemistry, 54(23), 8936–8944.

    CAS  PubMed  Google Scholar 

  • Chien, S.-Y., Sheen, S., Sommers, C., & Sheen, L.-Y. (2019). Combination effect of high-pressure processing and essential oil (Melissa officinalis extracts) or their constituents for the inactivation of Escherichia coli in ground beef. Food and Bioprocess Technology, 12(3), 359–370.

    CAS  Google Scholar 

  • Childs, J. L., & Drake, M. (2010). Consumer perception of astringency in clear acidic whey protein beverages. Journal of Food Science, 75(9), S513–S521.

    CAS  PubMed  Google Scholar 

  • Considine, T., Patel, H., Anema, S., Singh, H., & Creamer, L. (2007). Interactions of milk proteins during heat and high hydrostatic pressure treatments—a review. Innovative Food Science & Emerging Technologies, 8(1), 1–23.

    CAS  Google Scholar 

  • Considine, K. M., Kelly, A. L., Fitzgerald, G. F., Hill, C., & Sleator, R. D. (2008). High-pressure processing—effects on microbial food safety and food quality. FEMS Microbiology Letters, 281(1), 1–9.

    CAS  PubMed  Google Scholar 

  • Farjami, T., Madadlou, A., & Labbafi, M. (2015). Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocolloids, 50, 159–165.

    CAS  Google Scholar 

  • Funtenberger, S., Dumay, E., & Cheftel, J. (1997). High pressure promotes β-lactoglobulin aggregation through SH/S–S interchange reactions. Journal of Agricultural and Food Chemistry, 45(3), 912–921.

    CAS  Google Scholar 

  • Galazka, V. B., Dickinson, E., & Ledward, D. A. (2000). Influence of high pressure processing on protein solutions and emulsions. Current Opinion in Colloid & Interface Science, 5(3–4), 182–187.

    CAS  Google Scholar 

  • Gibbins, H., & Carpenter, G. (2013). Alternative mechanisms of astringency—what is the role of saliva? Journal of Texture Studies, 44(5), 364–375.

    Google Scholar 

  • Gruen, I. (2014). Application of natural, non-nutritive, high-potency sweeteners and sugar alcohols individually and in combination in an acidified protein beverage model. Columbia: University of Missouri.

    Google Scholar 

  • Handa, A., Takahashi, K., Kuroda, N., & FRONING, G. W. (1998). Heat-induced egg white gels as affected by pH. Journal of Food Science, 63(3), 403–407.

    CAS  Google Scholar 

  • Hashemi, B., Madadlou, A., & Salami, M. (2017). Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking. Food Chemistry, 237, 23–29.

    CAS  PubMed  Google Scholar 

  • He, X., Mao, L., Gao, Y., & Yuan, F. (2016). Effects of high pressure processing on the structural and functional properties of bovine lactoferrin. Innovative Food Science & Emerging Technologies, 38, 221–230.

    CAS  Google Scholar 

  • Hegg, P.-O. (1979). Precipitation of egg white proteins below their isoelectric points by sodium dodecyl sulphate and temperature. Biochimica et Biophysica Acta (BBA)-Protein Structure, 579(1), 73–87.

    CAS  Google Scholar 

  • Hirose, M., Takahashi, N., Oe, H., & Doi, E. (1988). Analyses of intramolecular disulfide bonds in proteins by polyacrylamide gel electrophoresis following two-step alkylation. Analytical Biochemistry, 168(1), 193–201.

    CAS  PubMed  Google Scholar 

  • Iyer, K. S., & Klee, W. A. (1973). Direct spectrophotometric measurement of the rate of reduction of disulfide bonds. The reactivity of the disulfide bonds of bovine α-lactalbumin. Journal of Biological Chemistry, 248(2), 707–710.

    CAS  PubMed  Google Scholar 

  • Kanno, C., Mu, T.-H., Hagiwara, T., Ametani, M., & Azuma, N. (1998). Gel formation from industrial milk whey proteins under hydrostatic pressure: effect of hydrostatic pressure and protein concentration. Journal of Agricultural and Food Chemistry, 46(2), 417–424.

    CAS  PubMed  Google Scholar 

  • Kelly, M., Vardhanabhuti, B., Luck, P., Drake, M., Osborne, J., & Foegeding, E. (2010). Role of protein concentration and protein–saliva interactions in the astringency of whey proteins at low pH. Journal of Dairy Science, 93(5), 1900–1909.

    CAS  PubMed  Google Scholar 

  • Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549–559.

    CAS  PubMed  Google Scholar 

  • Kuropatwa, M., Tolkach, A., & Kulozik, U. (2009). Impact of pH on the interactions between whey and egg white proteins as assessed by the foamability of their mixtures. Food Hydrocolloids, 23(8), 2174–2181.

    CAS  Google Scholar 

  • Laaksonen, O. A., Mäkilä, L., Sandell, M. A., Salminen, J.-P., Liu, P., Kallio, H. P., & Yang, B. (2014). Chemical-sensory characteristics and consumer responses of blackcurrant juices produced by different industrial processes. Food and Bioprocess Technology, 7(10), 2877–2888.

    CAS  Google Scholar 

  • Llaudy, M. C., Canals, R., Canals, J.-M., Rozés, N., Arola, L., & Zamora, F. (2004). New method for evaluating astringency in red wine. Journal of Agricultural and Food Chemistry, 52(4), 742–746.

    CAS  PubMed  Google Scholar 

  • Lopez-Fandino, R., Carrascosa, A., & Olano, A. (1996). The effects of high pressure on whey protein denaturation and cheese-making properties of raw milk. Journal of Dairy Science, 79(6), 929–936.

    CAS  Google Scholar 

  • McRae, J. M., & Kennedy, J. A. (2011). Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research. Molecules, 16(3), 2348–2364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulcahy, E. M., Fargier-Lagrange, M., Mulvihill, D. M., & O’Mahony, J. A. (2017). Characterisation of heat-induced protein aggregation in whey protein isolate and the influence of aggregation on the availability of amino groups as measured by the ortho-phthaldialdehyde (OPA) and trinitrobenzenesulfonic acid (TNBS) methods. Food Chemistry, 229, 66–74.

    CAS  PubMed  Google Scholar 

  • Ngarize, S., Adams, A., & Howell, N. K. (2004). Studies on egg albumen and whey protein interactions by FT-Raman spectroscopy and rheology. Food Hydrocolloids, 18(1), 49–59.

    CAS  Google Scholar 

  • Patel, H. A., Singh, H., Anema, S. G., & Creamer, L. K. (2006). Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk. Journal of Agricultural and Food Chemistry, 54(9), 3409–3420.

    CAS  PubMed  Google Scholar 

  • Pega, J., Denoya, G. I., Castells, M., Sarquis, S., Aranibar, G., Vaudagna, S. R., & Nanni, M. (2018). Effect of high-pressure processing on quality and microbiological properties of a fermented beverage manufactured from sweet whey throughout refrigerated storage. Food and Bioprocess Technology, 11(6), 1101–1110.

    CAS  Google Scholar 

  • Pelegrine, D., & Gasparetto, C. (2005). Whey proteins solubility as function of temperature and pH. LWT-Food Science and Technology, 38(1), 77–80.

    CAS  Google Scholar 

  • Prindiville, E., Marshall, R., & Heymann, H. (2000). Effect of milk fat, cocoa butter, and whey protein fat replacers on the sensory properties of lowfat and nonfat chocolate ice cream. Journal of Dairy Science, 83(10), 2216–2223.

    CAS  PubMed  Google Scholar 

  • Rastogi, N., Raghavarao, K., Balasubramaniam, V., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69–112.

    CAS  PubMed  Google Scholar 

  • Rodríguez-Garayar, M., Martín-Cabrejas, M. A., & Esteban, R. M. (2017). High hydrostatic pressure in astringent and non-astringent persimmons to obtain fiber-enriched ingredients with improved functionality. Food and Bioprocess Technology, 10(5), 854–865.

    Google Scholar 

  • Rojo, M. C., Cristiani, M., Szerman, N., Gonzalez, M., Lerena, M. C., Mercado, L. A., & Combina, M. (2019). Reduction of Zygosaccharomyces rouxii population in concentrated grape juices by thermal pasteurization and hydrostatic high pressure processing. Food and Bioprocess Technology, 12(5), 781–788.

    CAS  Google Scholar 

  • Russell, T., Drake, M., & Gerard, P. (2006). Sensory properties of whey and soy proteins. Journal of Food Science, 71(6), S447–S455.

    CAS  Google Scholar 

  • Sano, H., Egashira, T., Kinekawa, Y., & Kitabatake, N. (2005). Astringency of bovine milk whey protein. Journal of Dairy Science, 88(7), 2312–2317.

    CAS  PubMed  Google Scholar 

  • Stadelman, W. J., Newkirk, D., & Newby, L. (2017). Egg science and technology. CRC.

  • Surewicz, W. K., Mantsch, H. H., & Chapman, D. (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry, 32(2), 389–394.

    CAS  PubMed  Google Scholar 

  • Vardhanabhuti, B., Cox, P., Norton, I., & Foegeding, E. (2011). Lubricating properties of human whole saliva as affected by β-lactoglobulin. Food Hydrocolloids, 25(6), 1499–1506.

    CAS  Google Scholar 

  • Wang, B., Liu, F., Luo, S., Li, P., Mu, D., Zhao, Y., Zhong, X., Jiang, S., & Zheng, Z. (2019). Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food and Bioprocess Technology, 12(2), 220–227.

    Google Scholar 

  • Whetstine, M. C., Croissant, A., & Drake, M. (2005). Characterization of dried whey protein concentrate and isolate flavor. Journal of Dairy Science, 88(11), 3826–3839.

    Google Scholar 

  • Wilder, C. L., Friedrich, A. D., Potts, R. O., Daumy, G. O., & Francoeur, M. L. (1992). Secondary structural analysis of two recombinant murine proteins, interleukins 1 alpha and 1 beta: is infrared spectroscopy sufficient to assign structure? Biochemistry, 31(1), 27–31.

    CAS  PubMed  Google Scholar 

  • Woodward, S., & Cotterill, O. (1985). Preparation of cooked egg white, egg yolk, and whole egg gels for scanning electron microscopy. Journal of Food Science, 50(6), 1624–1628.

    Google Scholar 

  • Ye, A., Zheng, T., Jack, Z. Y., & Singh, H. (2012). Potential role of the binding of whey proteins to human buccal cells on the perception of astringency in whey protein beverages. Physiology & Behavior, 106(5), 645–650.

    CAS  Google Scholar 

  • Yuan, F., Xu, D., Qi, X., Zhao, J., & Gao, Y. (2013). Impact of high hydrostatic pressure on the emulsifying properties of whey protein isolate–chitosan mixtures. Food and Bioprocess Technology, 6(4), 1024–1031.

    CAS  Google Scholar 

  • Zand-Rajabi, H., & Madadlou, A. (2016). Citric acid cross-linking of heat-set whey protein hydrogel influences its textural attributes and caffeine uptake and release behaviour. International Dairy Journal, 61, 142–147.

    CAS  Google Scholar 

  • Zhang, S., Zhang, Z., Lin, M., & Vardhanabhuti, B. (2012). Raman spectroscopic characterization of structural changes in heated whey protein isolate upon soluble complex formation with pectin at near neutral pH. Journal of Agricultural and Food Chemistry, 60(48), 12029–12035.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Hsieh, F.-H., & Vardhanabhuti, B. (2014a). Acid-induced gelation properties of heated whey protein–pectin soluble complex (part I): effect of initial pH. Food Hydrocolloids, 36, 76–84.

    Google Scholar 

  • Zhang, S., Zhang, Z., & Vardhanabhuti, B. (2014b). Effect of charge density of polysaccharides on self-assembled intragastric gelation of whey protein/polysaccharide under simulated gastric conditions. Food & Function, 5(8), 1829–1838.

    CAS  Google Scholar 

  • Zhang, Z., Yu, Q., Li, H., Mustapha, A., & Lin, M. (2015). Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. Journal of Food Science, 80(2), N450–N458.

    CAS  PubMed  Google Scholar 

  • Zhu, Y., Vanga, S. K., Wang, J., & Raghavan, V. (2018). Effects of ultrasonic and microwave processing on avidin assay and secondary structures of egg white protein. Food and Bioprocess Technology, 11(11), 1974–1984.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank John J. Churey at the HPP Validation Center in Geneva, NY, for his help in HPP treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abbaspourrad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 158 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, Y., Lee, M.C. et al. The Impact of High-Pressure Processing on the Structure and Sensory Properties of Egg White-Whey Protein Mixture at Acidic Conditions. Food Bioprocess Technol 13, 379–389 (2020). https://doi.org/10.1007/s11947-019-02397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02397-6

Keywords