Skip to main content
Log in

Ultrasonication of Milky Stage Rice Milk with Bioactive Peptides from Rice Bran: Its Bioactivities and Absorption

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Rice in early development stage contains peptides and various bioactive compounds. Rice protein hydrolysate was prepared from Riceberry bran protein hydrolysed with Alcalase® and trypsin. Protein hydrolysate from Alcalase® (MW < 3 kDa) was fractionated into 12 fractions using RP-HPLC and tested for antioxidant, ACE, and ROS-inhibitory activity. Peptide from RP-HPLC fraction 1 showed that the lowest ROS inhibition and highest antioxidant were identified by LC-MS/MS as Val-Leu-Ala-Ala-Gly-Cys-Pro-Leu. Peptide fraction 4 showed that the strongest in vitro ACE-inhibitory activity was identified as Ala-Met-Ser-Phe-Ala-Glu-Met. Young Riceberry milk was then enriched with Alcalase® protein hydrolysate (MW < 3 kDa) and sonicated at amplitude 20% for 30 min and 40% for 60 min. Particle size, transmittance, and Caco-2 cell absorption were measured. The highest peptide content and % absorption was found in young rice milk ultrasonicated at 40% for 60 min. Rice bran protein hydrolysate produced by Alcalase® had much smaller MW bioactive peptides and could be used as a potent functional food ingredient. The young rice milk fortified with bioactive peptides after high power ultra-sonication could increase the in vitro intestinal absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., & Dufresne, A. (2004). Optimization of the preparation of aqueous suspensions of waxy starch nanocrystals using a response surface methodology. Biomacromolecules, 5(4), 1545–1551.

    PubMed  CAS  Google Scholar 

  • Antosova, Z., Mackova, M., Kral, V., & Macek, T. (2009). Therapeuctic Application of peptides and protein; parenteral forever. Trends in Biotechnology, 27(11), 628–635.

    PubMed  CAS  Google Scholar 

  • Cushman, D. W., Cheung, H. S., Sabo, E. F., & Ondetti, M. A. (1997). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry, 16(25), 5484–5491.

    Google Scholar 

  • Durak, A., Baraniak, B., Jakubczyk, A., & Swieca, M. (2013). Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chemistry, 141(3), 2177–2183.

    PubMed  CAS  Google Scholar 

  • Gardner, M. (1988). Gastrointestinal absorption of intact proteins. Annual Review of Nutrition, 8, 329–350.

    PubMed  CAS  Google Scholar 

  • Haaj, S. B., Magnin, A., Petrier, C., & Boufi, S. (2013). Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers, 92(2), 1625–1632.

    Google Scholar 

  • Helm, R. M., & Burks, A. W. (1996). Hypoallergenicity of rice protein. Cereal Foods World, 41, 839–843.

  • Jiamyangyuen, S., Nuengchamnong, N., & Ngamdee, P. (2017). Bioactivity and chemical components of Thai rice in five stages of grain development. Journal of Cereal Science, 74, 136–144.

    CAS  Google Scholar 

  • Juliano, B. O. (1993). Rice in Human Nutrition. Rome: Food and Agriculture Organization of the United Nations 162 pp.

    Google Scholar 

  • Khiari, Z., Ndagilimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization / precipitation process of turkey by-products. Poultry Science, 93(9), 2347–2362.

    PubMed  CAS  Google Scholar 

  • Kim, S. B., Seo, I. S., Khan, M. A., Ki, K. S., Lee, W. S., Lee, H. J., Shin, H. S., & Kim, H. S. (2007). Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions. Journal of Dairy Science, 90(9), 4033–4042.

    PubMed  CAS  Google Scholar 

  • Kumagai, T., Kawamura, H., Fuse, T., Watanabe, T., Saito, Y., Masumura, T., Watanabe, R., & Kadowaki, M. (2006). Production of rice protein by alkaline extraction improves its digestibility. Journal of Nutritional Science and Vitaminology, 52(5), 467–472.

    PubMed  CAS  Google Scholar 

  • Leardkamolkarn, V., Thongthep, W., Suttiarporn, P., Kongkachuichai, R., Wongpornchai, S., & Wanavijitr, A. (2011). Chemopreventive properties of the bran extracted from a newly-developed Thai rice: the Riceberry. Food Chemistry, 125(3), 978–985.

    CAS  Google Scholar 

  • Li, G. H., Qu, M. R., Wan, J. Z., & You, J. M. (2007). Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive eats. Asia Pacific Journal of Clinical Nutrition, 16(1), 275–280.

    PubMed  CAS  Google Scholar 

  • Li, H. M., Li, Q. L., Wang, X., Xu, K. H., Chen, Z. Z., Gong, X. C., Liu, X., Tong, L. L., & Tang, B. (2009). Simultaneous determination of superoxide and hydrogen peroxide in macrophage raw 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection. Analytical Chemistry, 81(6), 2193–2198.

    PubMed  CAS  Google Scholar 

  • Li. N., Huang, J., Chang, P. R., Feng, L., Yu, J. (2011). Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids and Surfaces B: Biointerfaces, 85, 270–279.

    PubMed  CAS  Google Scholar 

  • Lin, P. Y., & Lai, H. M. (2011). Bioactive compounds in rice during grain development. Food Chemistry, 127(1), 86–93.

    CAS  Google Scholar 

  • Majid, I., Nayik, G. A., & Vikas, N. (2015). Ultrasonication and food technology: a review. Cogent Food & Agriculture., 1, 1.

    Google Scholar 

  • Meisel, H., & FitzGerald, R. J. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Current Pharmaceutical, 9, 1289–1295.

    CAS  Google Scholar 

  • Mora, L., Aristoy, M. C., & Toldra, F. (2019). Bioactive Peptides. In L. Melton (Ed.), Encyclopedia of Food Chemistry (pp. 381–389). Cambridge: Academic.

    Google Scholar 

  • Panyam, D., & Kilara, A. (1996) Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology, 7, 120–125. https://doi.org/10.1016/0924-2244(96)10012-1.

    CAS  Google Scholar 

  • Pan, M., Jiang, T. S., & Pan, J. L. (2011). Antioxidant activities of rapeseed protein hydrolysates. Food and Bioprocess Technology, 4(7), 1144–1152.

    CAS  Google Scholar 

  • Parker, F., Migliore-Samour, D., Floch, F., Zerial, A., Werner, G. H., Jolles, J., Casaretto, M., Zhan, H., & Jolles, P. (1984). Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. European Journal of Biochemistry, 145(3), 677–682.

    PubMed  CAS  Google Scholar 

  • Power, O., Jakeman, P., & Fitz-Gerald, R. (2013). Antioxidant peptides: enzymatic production in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids, 44(3), 797–820.

    PubMed  CAS  Google Scholar 

  • Prangthip, R., Surasiang, R., Charoensiri, R., Leardkamolkarn, V., Komindr, S., Yamborisut, U., Vanavichit, A., & Kongkachuichai, R. (2013). Amelioration of hyperglycemia, hyperlipidemia, oxidative stress and inflammation in steptozotocin-induced diabetic rats fed a high fat diet by Riceberry supplement. Journal of Functional Foods, 5(1), 195–203.

    CAS  Google Scholar 

  • Rawendra, R. D., Aisha, C., Aulanniam, C. I., Chen, H. H., Huang, T. C., & Hsu, J. L. (2013). A novel angiotensin converting enzyme inhibitory peptide derived from proteolytic digest of Chinese soft-shelled turtle egg white proteins. Journal of Proteomics, 94, 359–369.

    PubMed  CAS  Google Scholar 

  • Samaranayaka, A. G., Kitts, D. D., Li-Chan, E. C. (2010). Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific Hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. Journal of Agricultural and Food Chemistry, 58(3). https://doi.org/10.1021/jf9033199.

    PubMed  CAS  Google Scholar 

  • Sari, Y. W., Mulder, W. J., Sanders, J. P., & Bruins, M. E. (2015). Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10(8), 1138–1157.

    PubMed  CAS  Google Scholar 

  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949–1956.

    PubMed  CAS  Google Scholar 

  • Shih, F. F., & Daigle, K. W. (2000). Preparation and characterization of rice protein isolates. Journal of the American Oil Chemists' Society, 77(8), 885–889.

    CAS  Google Scholar 

  • Tsopmo, A., Copper, A., & Jodayree, S. (2010). Enzymatic hydrolysis of oat flour protein isolates to enhance antioxidative properties. Advance Journal of Food Science and Technology, 2(4), 206–212.

    CAS  Google Scholar 

  • Udall, J. N., Pang, K., Fritze, L., Kleinman, R., & Walker, W. A. (1981). Development of gastrointestinal mucosal barrier. I. The effect of age on intestinal permeability to macromolecules. Pediatric Research, 15(3), 241–244.

    PubMed  CAS  Google Scholar 

  • Uraipong, C., & Zhao, J. (2016). Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities. Journal of the Science of Food and Agriculture, 96(4), 1101–1110.

    PubMed  CAS  Google Scholar 

  • Vig, B. S., Stouch, T. R., Timoszyk, J. K., Quan, Y., Wall, D. A., Smith, R. L., & Faria, T. N. (2006). Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. Journal of Medicinal Chemistry, 49(12), 3636–3644.

    PubMed  CAS  Google Scholar 

  • Walker, W. A., & Bloch, K. J. (1983). Intestinal uptake of macromoleucules: in vitro and in vivo studies. Annals of the New York Academy of Sciences, 409, 593–602.

    PubMed  CAS  Google Scholar 

  • Wang, C., Xu, F., Li, D., & Zhang, M. (2015). Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech Journal of Food Sciences, 33(3), 283–291.

    CAS  Google Scholar 

  • Wu, J., & Ding, X. (2002). Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International, 35(4), 367–375.

    CAS  Google Scholar 

  • Xia, Y., Bamdad, F., Ganzle, M., & Chen, L. (2012). Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chemistry, 134(3), 1509–1518.

    PubMed  CAS  Google Scholar 

  • Xing, S., Meng, X., Zhou, L., Mujahid, H., & Zhao, C. (2016). Proteome profile of starch granules purified from rice (Oryza sativa) endosperm. PLoS One, 11(12), e0168467. https://doi.org/10.1371/journal.pone.0168467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., & Yao, H. (2010). Isolation and identification of antioxidant peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chemistry, 199(1), 226–234.

    Google Scholar 

  • Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Zhong, H., Wang, S., Sun, W., & Zhou, Q. (2012). Enzymatic hydrolysis of rice dreg protein: effect of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry, 134(3), 1360–1367.

    PubMed  CAS  Google Scholar 

  • Ziv, G., & Bendayan, M. (2000). Intestinal absorption of peptides through the enterocytes. Microscopy Research and Technique, 49(4), 346–352.

    PubMed  CAS  Google Scholar 

  • Ziv, E., Lior, O., & Kidrom, M. (1987). Absorption of protein via intestinal wall: a quantitative model. Biochemical Pharmacology, 36(7), 1035–1039.

    PubMed  CAS  Google Scholar 

Download references

Funding

This project was partially supported by the National Research Council of Thailand (NRCT), the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, and the Research and Development Institute, Kasetsart University. Additional thanks to the International Affairs Division, Kasetsart University, for student support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prisana Suwannaporn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngamsuk, S., Hsu, JL., Huang, TC. et al. Ultrasonication of Milky Stage Rice Milk with Bioactive Peptides from Rice Bran: Its Bioactivities and Absorption. Food Bioprocess Technol 13, 462–474 (2020). https://doi.org/10.1007/s11947-019-02371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02371-2

Keywords

Navigation