Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1798–1807 | Cite as

Green Extraction of Fennel and Anise Edible Oils Using Bio-Based Solvent and Supercritical Fluid: Assessment of Chemical Composition, Antioxidant Property, and Oxidative Stability

  • Iness Bettaieb RebeyEmail author
  • Soumaya Bourgou
  • Pauline Detry
  • Wissem Aidi Wannes
  • Tierry Kenny
  • Riadh Ksouri
  • Ibtissem Hamrouni Sellami
  • Marie-Laure Fauconnier
Original Paper
  • 127 Downloads

Abstract

The aim of this study was to evaluate the replacement aspects of conventional methods (petroleum-based solvent and Folch assay) by alternative methods (bio-based and biodegradable solvent 2-methyltetrahydrofuran (MeTHF) and supercritical CO2 (SC-CO2)) for seed oil extraction from anise (Pimpinella anisum L.) and fennel (Foeniculum vulgare Mill.). Results showed that the highest oil yield of aniseeds was obtained by using Folch (24.07%) and MeTHF (23.65%) extraction methods whereas fennel seeds had 20.02% and 18.72%, respectively. Fatty acid composition of both seed oils obtained by the two green extraction methods was similar to the conventional ones with the predominance of petroselinic acid (54.22–61.25% in fennel and 42.39–48.97% in anise). Besides, SC-CO2 method allowed to obtain the maximum of sterol content in anise (3.85 mg/g of oil) and fennel (4.64 mg/g of oil) seed oils. Furthermore, anise and fennel seed oils extracted with MeTHF method significantly showed higher total phenolic content (2.43 and 1.32 mg GA/g oil, respectively), stronger antioxidant activity (9.23 and 5.04 μmol TEAC/g oil, respectively), and oxidative stability (8.23 and 10.15 h, respectively) than the other methods (p < 0.05). In conclusion, MeTHF appeared to be a good substitute to petroleum solvents for recovery of high oil quality from Pimpinella anisum and Foeniculum vulgare seeds.

Keywords

Pimpinella anisum L. Foeniculum vulgare Mill. Conventional methods Green extraction 2-methyltetrahydrofuran Supercritical CO2 

Notes

Funding Information

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR15CBBC06).

References

  1. Abert Vian, M., Dejoye Tanzi, C., & Chemat, F. (2013). Techniques conventionelles et innovantes, et solvants alternatifs pour l’extraction des lipides de micro-organismes. Oilseeds fats Crop. Lipids, 20, 1–6.Google Scholar
  2. Akinoso, R., & Adeyanju, J. A. (2012). Optimization of edible oil extraction from ofada rice bran using response surface methodology. Food and Bioprocess Technology, 5(4), 1372–1378.CrossRefGoogle Scholar
  3. Anonymos (1997). Determination of the composition of the sterol fraction of animal and vegetable oils and fats by TLC and capillary GLC. AOCS, Official Method Ch 6–91.Google Scholar
  4. Ben Khedir, S., Bardaa, S., Chabchoub, N., Moalla, D., Sahnoun, Z., & Rebai, T. (2017). The healing effect of Pistacia lentiscus fruit oil on laser burn. Pharmaceutical Biology, 55(1), 1407–1414.CrossRefGoogle Scholar
  5. Bernardo-Gil, M. G., Grenha, J., Santos, J., & Cardoso, P. (2002). Supercritical fluid extraction and characterization of oil from hazelnut. European Journal of Lipid Science and Technology, 104(7), 402–409.CrossRefGoogle Scholar
  6. Bettaieb Rebey, I., Rahali, F. Z., Saidani Tounsi, M., Marzouk, B., & Ksouri, R. (2016). Variation in fatty acid and essential oil composition of sweet fennel (Foeniculum vulgare Mill) seeds as affected by salinity. Journal of New Sciences, Agriculture and Biotechnology, IABC, 6, 1233–1240.Google Scholar
  7. Bettaieb Rebey, I., Bourgou, S., Saidani Tounsi, M., Fauconnier, M. L., & Ksouri, R. (2018). Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds. Plant Biosystems, 152(5), 971–978.CrossRefGoogle Scholar
  8. Boutin, O., & Badens, E. (2009). Extraction from oleaginous seeds using supercritical CO2: experimental design and products quality. Journal of Food Engineering, 92(4), 396–402.CrossRefGoogle Scholar
  9. Breil, C., Meullemiestre, A., Vian, M., & Chemat, F. (2016). Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules, 21, E196.CrossRefGoogle Scholar
  10. Cecchi, G., Biasini, S., & Castano, J. (1985). Méthanolyse rapide des huiles en solvant. Note de laboratoire. Revue Française des Corps Gras, 4, 163–164.Google Scholar
  11. Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560.CrossRefGoogle Scholar
  12. Cheung, P. C. K., Leung, A. Y. H., & Ang, P. O. (1998). Comparison of supercritical carbon dioxide and Soxhlet extraction of brown seaweed Sargassum hemiphyllum (turn.). Journal of Agricultural and Food Chemistry, 46(10), 4228–4232.CrossRefGoogle Scholar
  13. Danh, L. T., Han, L. N., Triet, N. D. A., Zhao, J., Mammucari, R., & Foster, N. (2013). Comparison of chemical composition, antioxidant and antimicrobial activity of lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food and Bioprocess Technology, 6(12), 3481–3489.CrossRefGoogle Scholar
  14. Dong, S., Zhang, R., Ji, Y. C., Hao, J. Y., Ma, W. W., Chen, X. D., & Yu, H. L. (2016). Soy milk powder supplemented with phytosterol esters reduced serum cholesterol level in hypercholesterolemia independently of lipoprotein E genotype: a random clinical placebo-controlled trial. Nutrition Research, 36(8), 879–884.CrossRefGoogle Scholar
  15. Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.Google Scholar
  16. Holser, R. (2003). Seed conditioning and meadow foam press oil quality. Industrial Crops and Products, 17(1), 23–26.CrossRefGoogle Scholar
  17. Kiralan, M., Bayrak, A., & Mucahit, T. O. (2009). Oxidation stability of virgin olive oils from some important cultivars in East Mediterranean area in Turkey. Journal of the American Oil Chemists' Society, 86(3), 247–252.CrossRefGoogle Scholar
  18. Konuskan, D. B., Kamiloglu, O., & Demirkeser, Ö. (2019). Fatty acid composition, total phenolic content and antioxidant activity of grape seed oils obtained by cold- pressed and solvent extraction. Indian Journal of Pharmaceutical Education and Research, 53(1), 144–150.CrossRefGoogle Scholar
  19. Koubaa, M., Roselló-Soto, E., Šic Žlabur, J., Režek Jambrak, A., Brnčić, M., Grimi, N., Boussetta, N., & Barba, F. J. (2015). Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. Journal of Agricultural and Food Chemistry, 63(31), 6835–6846.CrossRefGoogle Scholar
  20. Koubaa, M., Mhemdi, H., Barba, F. J., Roohinejad, S., Greiner, R., & Vorobiev, E. (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: an overview. Food Research International, 85, 59–66.CrossRefGoogle Scholar
  21. Koubaa, M., Mhemdi, H., Barba, F. J., Angelotti, A., Bouaziz, F., Chaabouni, S. E., & Vorobiev, E. (2017). Seed oil extraction from red prickly pear using hexane and supercritical CO2: assessment of phenolic compound composition, antioxidant and antibacterial activities. Journal of the Sciences and Food Agricultural, 97(2), 613–620.CrossRefGoogle Scholar
  22. Kozłowska, M., Gruczyńska, E., Ścibisz, I., & Rudzińska, M. (2016). Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chemistry, 213, 450–456.CrossRefGoogle Scholar
  23. Kulkarni, N. G., Kar, J. R., & Singhal, R. S. (2017). Extraction of flaxseed oil: a comparative study of three-phase partitioning and supercritical carbon dioxide using response surface methodology. Food and Bioprocess Technology, 10(5), 1–9.CrossRefGoogle Scholar
  24. Liu, S. X., & Mamidipally, P. K. (2005). Quality comparison of rice bran oil extracted with limonene and hexane. Cereal Chemistry, 82(2), 209–215.CrossRefGoogle Scholar
  25. Liu, G., Xu, X., Hao, Q. F., & Gao, Y. X. (2009). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT - Food Science and Technology, 42(9), 1491–1495.CrossRefGoogle Scholar
  26. Liu, C., Han, X., Cai, L., Lu, X., Han, X. X., & Ying, T. J. (2012). Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. Journal of Integrative Agriculture, 11(1), 159–165.CrossRefGoogle Scholar
  27. Malacrida, C. R., & Jorge, N. (2012). Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Brazilian Archives of Biology and Technology, 55(1), 127–134.CrossRefGoogle Scholar
  28. Malheiro, R., Casal, S., Teixeira, H., Bento, A., & Pereira, J. A. (2013). Effect of olive leaves addition during the extraction process of overmature fruits on olive oil quality. Food and Bioprocess Technology, 6(2), 509–521.CrossRefGoogle Scholar
  29. Mariod, A. A., Matthaȕs, B., & Ismail, M. (2011). Comparison of supercritical fluid and hexane extraction methods in extracting kenaf (Hibiscus cannabinus) seed oil lipids. Journal of the American Oil Chemists' Society, 88(7), 931–935.CrossRefGoogle Scholar
  30. Mhemdi, H., Rodier, E., Kechaou, N., & Fages, J. (2011). A supercritical tuneable process for the selective extraction of fats and essential oil from coriander seeds. Journal of Food Engineering, 105(4), 609–616.CrossRefGoogle Scholar
  31. Miguel, M. G., Nunes, S., Dandlen, S. A., Cavaco, A. M., & Antunes, M. D. (2010). Phenols and antioxidant activity of hydro-alcoholic extracts of própolis from Algarve, south of Portugal. Food and Chemical Toxicology, 48(12), 3418–3423.CrossRefGoogle Scholar
  32. Misirli, H., Domac, F. M., Somay, G., Araal, O., Ozer, B., & Adiguzel, T. (2008). N-hexane induced polyneuropathy: a clinical and electrophysiological follow up. Electroencephalography and Clinical Neurophysiology, 48, 103–108.Google Scholar
  33. Molero Gómez, A., & Martı́nez de la Ossa, E. (2002). Quality of borage seed oil extracted by liquid and supercritical carbon dioxide. Chemical Engineering Journal, 88(1-3), 103–109.CrossRefGoogle Scholar
  34. Montedoro, G., Servili, M., Baldioli, M., & Miniati, E. (1992). Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. Journal of Agricultural and Food Chemistry, 40(9), 1571–1576.CrossRefGoogle Scholar
  35. Moura, L. S., Carvalho, R. N., Stefanini, M. B., Ming , L. C., & Meireles, M. A. A. (2005). Supercritical fluid extraction from fennel (Foeciculum vulgarae): global yield, composition and kinetic data. Journal of Supercritical Fluids, 35(3), 212–19.Google Scholar
  36. Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Man, Y. B. C. (2011). Optimization of supercritical CO2 extraction of phytosterol-enriched oil from Kalahari melon seeds. Food and Bioprocess Technology, 4(8), 1432–1441.CrossRefGoogle Scholar
  37. Pereira, C. G., Angela, M., & Meireles, A. (2010). Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340–372.CrossRefGoogle Scholar
  38. Pereira, M. G., Hamerskia, F., Andradeb, E. F., Scheera, A. P., & Corazzaa, M. L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. The Journal of Supercritical Fluids, 128, 338–348.CrossRefGoogle Scholar
  39. Ramadan, M. F., & Moersel, J. T. (2006). Screening of the radical action of vegetable oils. Journal of Food Composition and Analysis, 19(8), 838–842.CrossRefGoogle Scholar
  40. Ramadan, M. F., Asker, M. M. S., & Tadros, M. (2012). Antiradical and antimicrobial properties of cold-pressed black cumin and cumin oils. European Food Research and Technology, 234(5), 833–844.CrossRefGoogle Scholar
  41. Ribas, S. A., Sichieri, R., Moreira, A. S. B., Souza, D. O., Cabral, C. T. F., Gianinni, D. T., & Cunha, D. B. (2017). Phytosterol-enriched milk lowers LDL-cholesterol levels in Brazilian children and adolescents: double-blind, cross-over trial. Nutrition, Metabolism, and Cardiovascular Diseases, 27, 971–977.CrossRefGoogle Scholar
  42. Salgın, U., Salgın, S., Din, D., Ekici, D. D., & Uludag, G. (2016). Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction. Journal of Supercritical Fluids, 118, 194–202.CrossRefGoogle Scholar
  43. Sayed Ahmad, B., Talou, T., Saad, Z., Hijazi, A., Cerny, M., Kanaan, H., Chokr, A., & Merah, O. (2018). Fennel oil and by-products seed characterization and their potential applications. Industrial Crops and Products, 111, 92–98.CrossRefGoogle Scholar
  44. Shokri, A., Hatami, T., & Khamforoush, M. (2011). Near critical carbon dioxide extraction of anise (Pimpinella Anisum L.) seed: Mathematical and artificial neural network modeling. Journal of Supercritical Fluids, 58(1), 49–57.CrossRefGoogle Scholar
  45. Sicaire, A. G., Vian, M. A., Fine, F., Carré, P., Tostain, S., & Chemat, F. (2015). Experimental approach versus COSMO-RS assisted solvent screening for predicting the solubility of rapeseed oil. Oilseeds & fats Crops and Lipids, 22, 1–7.Google Scholar
  46. Simándi, B., Deák, A., Rónyai, E., Yanxiang, G., Veress, T., Lemberkovics, E., Then, M., Sass-Kiss, A., & Vámos-Falusi, Z. (1999). Supercritical carbon dioxide extraction and fractionation of fennel oil. Journal of Agricultural and Food Chemistry, 47(4), 1635–1640.CrossRefGoogle Scholar
  47. Sovilj, M. N. (2010). Critical review of supercritical carbon dioxide extraction of selected oil seeds. Acta Periodica technologica, 41, 1–203.Google Scholar
  48. Stupp, T., Freitas, R. A., Sierakowski, M. R., Deschamps, F. C., Wisniewski, A., & Biavatti, M. W. (2008). Characterization and potential uses of Copaifera langsdorfii seeds and seed oil. Bioresource Technology, 99(7), 2659–2663.CrossRefGoogle Scholar
  49. Tabee, E., Azadmard-Damirchi, S., Jägerstad, M., & Dutta, P. C. (2008). Lipids and phytosterol oxidation in commercial French fries commonly consumed in Sweden. Journal of Food Composition and Analysis, 21(2), 169–177.CrossRefGoogle Scholar
  50. Tasioula-Margari, M., & Tsabolatidou, E. (2015). Extraction, separation, and identification of phenolic compounds in virgin olive oil by HPLC-DAD and HPLC-MS. Antioxidants, 4(3), 548–562.CrossRefGoogle Scholar
  51. Virot, M. V., Tomao, C., Ginies, F., Visinoni, & Chemat, F. (2008). Microwave-integrated extraction of total fats and oils. Journal of Chromatography A, 1196, 147–152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Iness Bettaieb Rebey
    • 1
    • 2
    Email author
  • Soumaya Bourgou
    • 1
  • Pauline Detry
    • 2
  • Wissem Aidi Wannes
    • 1
  • Tierry Kenny
    • 2
  • Riadh Ksouri
    • 1
  • Ibtissem Hamrouni Sellami
    • 1
  • Marie-Laure Fauconnier
    • 2
  1. 1.Laboratory of Medicinal and Aromatic PlantsBiotechnology Center of Borj-CedriaHammam-LifTunisia
  2. 2.General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium

Personalised recommendations